Language:

 

A.E. Arbuzov Institute of Organic and Physical Chemistry

Subdivision of the Federal State Budgetary Institution of Science "Kazan Scientific Center of Russian Academy of Sciences"

Laboratory of functional materials

Laboratory of Functional Materials

was founded in 2013 on the basis of the laboratory of chemistry of carbon nanomaterials.

 

Head of laboratory

 

Principal researcher,
Doctor of Chemistry

Marina Yurievna Balakina

Phone number:  (843) 272-73-74

Email  marina@iopc.ru, mbalakina@yandex.ru

 

Deputy head of the laboratory:


Junior Researcher, PhD Alina Ibragimovna Levitskaya

Research stuff:


Senior researcher, Doctor of Chemistry Alexey Alexandrovich Kalinin
Senior researcher, PhD Tatyana Anatolievna Vakhonina
Senior Researcher, PhD Olga Dmitrievna Fominykh
Researcher, PhD Guzel Midikhatovna Fazleeva
Researcher, PhD Anvar Sharafulislamovich Mukhtarov
Researcher, PhD Liliya Nailevna Islamova
Junior Researcher, PhD Gulshat Nailovna Nazmieva
Junior Researcher Sirina Muzagidanovna Sharipova
Junior Researcher Anastasiya Vladimirovna Sharipova
Junior Researcher Nikita Ivanovich Shalin
Junior Researcher Alfira Alfirovna Kadyrova

 

Main Research areas


Main aim of the research of the Laboratory is the development of organic polymer materials with quadratic nonlinear optical (NLO) properties. The distinguishing feature of the work is complex approach including computer simulation, targeted synthesis of chromophores and polymers and the creation of NLO-active materials on this basis, as well as the study of physical-chemical and optical properties of the obtained materials.

 

Grants support


Grants of the Academy of Sciences of Tatarstan Republic for support of young Russian scientists 03-142т_Г 2014
Grants of the Academy of Sciences of Tatarstan Republic for support of young Russian scientists 04-50-ф Г 2016
Russian Foundation for basic Research 15-03-04423
Russian Foundation for basic Research 15-03-03048
Russian Foundation for basic Research 19-03-00232
Russian Science Foundation 16-13-10215
Basic Research Program of the Department of Chemistry and Material Science of Russian Academy of Sciences №32, №38

 

Cooperation

 

  • Institute of Physics of KFU.
  • Zavoisky Physical Technical Institute, Kazan Scientific Center, Russian Academy of Sciences.
  • Institute of Macromolecular Compounds RAS, St Petersburg.
  • Institute of problems of chemical physics, RAS, Chernogolovka.
  • Enikolopov Institute of Synthetic Polymer Materials, RAS, Moscow.


I. Theoretical research includes atomistic modeling and quantum-chemical calculations:

  • Quantum-chemical calculations of chromophores structural parameters and NLO characteristics in terms of DFT and MP2 permit obtaining structure-property relationship and performing targeted design of promising dipole molecules which may serve as molecular sources of materials NLO response;
  • Atomistic modeling of the studied oligomers by Monte-Carlo and Molecular dynamics techniques allows estimating local mobility of chromophores and chain fragments, non-covalent interactions between chromophores and oligomer chains, and to determine glass transition temperature of polymer materials.

Results of theoretical research are used at each stage of polymer NLO materials development: they permit to refine the synthesis strategy, interpret the results of experimental research (in particular, those obtained by Dielectric Spectroscopy), and develop time-temperature protocols of polymer films poling.
Analytical approaches are developed which relate chromophores molecular polarizabilities and macroscopic characteristics of polymer materials: such studies are aimed at optimizing polymer materials NLO activity.
 

Main publications:


Theoretical predictions of nonlinear optical characteristics of novel chromophores with quinoxalinone moieties
A.I. Levitskaya, A.A. Kalinin, O.D. Fominykh, M.Yu. Balakina
Computational and Theoretical Chemistry 2015, 1074, 91–100

 

 

The choice of appropriate density functional for the calculation of static first hyperpolarizability of azochromophores and stacking dimers
O.D. Fominykh, A.V. Sharipova, M.Yu. Balakina
International Journal of Quantum Chemistry 2016, 116, 103–112

 

   


Molecular graphs for stacking-dimer, calculated using B97D a), xB97X-D b), and M06-2X c) functionals (BSSE-corrected)
 

 

Modeling of Nonlinear Optical Activity of Epoxyamine Oligomers with Binary Chromophore Groups
A.I. Levitskaya, O.D. Fominykh, M.Yu. Balakina
Macromolecular Theory and Simulations, 2016, 25, 591-600

 


Dynamic first hyperpolarizability of trans- and cis-isomers of azobenzene chromophore DO3 calculated at DFT and MP2 levels
I.V. Vasilyev, O.D. Fominykh, M.Yu. Balakina
Computational and Theoretical Chemistry 2018, 1139, 1–8

 



II. Synthesis of effective dipole NLO chromophores
of two new classes – compounds with quinoxaline fragment in π-electron bridge and compounds with indolizine donor fragment. The first class includes chromophores with divinylquinoxaline-2-one (1a) and phenylquinoxaline (1b) conjugated π-electron bridges to which donor and acceptor fragments are attached in sites 7 and 3, correspondingly.

The representatives of the synthesized chromophores are characterized by high values of first hyperpolarizability and thermal stability, which exceed the values for the best literature chromophores; the synthesized chromophores are promising candidates for the development of effective NLO materials.
The second class includes chromophores with two types of isomeric indolizine chromophores with different acceptor fragments and various length of π-bridge. Composite polymer materials on the basis of indolizine chromophores already with a simple vinylene π-bridge demonstrate NLO coefficient ~ 40 pm/V what is three times higher than that for lithium niobate – conventional inorganic electrooptic material.

 

Main publications:


Push–pull isomeric chromophores with vinyl- and divinylquinoxaline-2-one units as π-electron bridge: Synthesis, photophysical, thermal and electro-chemical properties

A.A. Kalinin, S.M. Sharipova, T.I. Burgamov, Yu.B. Dudkina, A.R. Khamatgalimov, S.A. Katsyuba, Yu.H. Budnikova, M.Yu. Balakina
Dyes and Pigments, 2017, 146, 82-91

 

    
 


High thermally stable D–π–A chromophores with quinoxaline moieties in the conjugated bridge: Synthesis, DFT calculations and physical properties
A.A. Kalinin, S.M. Sharipova, T.I. Burganov, A.I. Levitskaya, Yu.B. Dudkina, A.R. Khamatgalimov, S.A. Katsyuba, Yu.H. Budnikova, M.Yu. Balakina
Dyes and Pigments, 2018, 156, 175-184


 


Synthesis and characterization of new second-order NLO chromophores containing the isomeric indolizine moiety for electro-optical materials
A.A. Kalinin, M.A. Smirnov, L.N. Islamova, G.M. Fazleeva, T.A. Vakhonona, A.I. Levitskaya, O.D. Fominykh, N.V. Ivanova, A.R. Khamatgalimov, I.R. Nizameev, M.Yu. Balakina
Dyes and Pigments, 2017, 147, 444-454

 

 

Nonlinear optical activity of push–pull indolizine-based chromophores with various acceptor moieties
A.A. Kalinin, G.M. Fazleeva, T.I. Burganov, L.N. Islamova, A.I. Levitskaya, Yu.B. Dudkina, G.R. Shaikhutdinova, G.G. Yusupova, M.A. Smirnov, T.A. Vakhonona, N.V. Ivanova, A.R. Khamatgalimov, S.A. Katsyuba, Yu.H. Budnikova, I.R. Nizameev, M.Yu. Balakina
Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 764-772

 


 

III. Synthesis of chromophore-containing NLO polymers on the basis of epoxyamine oligomers and methacrylic copolymers of different structure. Reactive linear epoxyamine oligomers with NLO-active azochromophores introduced either to the main or side chains were synthesized; another class of epoxyamine oligomers contains dendritic azochromophore fragments in the side chain. The presence of hydroxyl or methacryloyl groups in the main chain permitted obtaining cross-linked NLO polymers. On the basis of synthesized epoxyamine oligomers thin films were fabricated (200-400 nm thick), in which in the course of poling in the corona field noncentrosymmetric chromophore groups arrangement is realized, which is necessary for exhibiting quadratic NLO response. The values of NLO coefficients of the developed epoxyamine polymers, determined by second harmonic generation technique (SHG; λ=1064 nm), are up to 60 pm/V. Cross-linking of the polymer chains provides long-term relaxation stability of NLO characteristics of the obtained material.
Methacrylic copolymers of linear and branched structure are synthesized, optimal concentration of azochromophore groups being determined. The presence of hydroxyl groups in the side chains allowed obtaining cross-linked polymers. The values of NLO coefficients of methacrylic copolymers achieve 60 pm/V (SHG; λ=1064 nm). Branched methacrylic copolymers where spatial separation of chromophore groups is realized, minimizing detrimental interactions between them, are characterized by high, up to 80 pm/V (SHG; λ=1064 nm), NLO coefficients. Cross-linked polymer materials are synthesized.


Main publications:


Development of new nonlinear optical polymers based on epoxy-amine oligomers with bi-chromophore fragments in the side chain

G.N. Nazmieva, T.A. Vakhonina, N.V. Ivanova, A.V. Sharipova, O.D. Fominykh, M.A. Smirnov, M.Yu. Balakina, O.G. Sinyashin
Polymer, 2018, 149, 253-265

 

 



Polymer Electrets with Quadratic Nonlinear-optical Activity
M.Yu. Balakina, O.D. Fominykh, T.A. Vakhonina, M.A. Smirnov, A.V. Sharipova
IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25 (3), 778-782



       


Synthesis and nonlinear optical properties of branched copolymers with covalently attached azochromophores
T.A. Vakhonina, M.Yu. Balakina, G.N. Nazmieva, N.V. Ivanova, S.V. Kurmaz, I.S. Kochneva, M.L. Bubnova, E.O. Perepelitsina, N.N. Smirnov, A.V. Yakimansky, O.G. Sinyashin
European Polymer Journal, 2014, 50, 158-167

 

(10 mol%) BMI; d33=77 пм/В

 

IV. Development of composite materials on the basis of methacrylic copolymers with synthesized NLO chromophores with quinoxaline and indolizine fragments as guests. Such materials exhibited high values of NLO and EO coefficients.
For the development of NLO materials the installations for polymer films poling in the corona discharge field and for electrooptic measurements by Teng-Man technique have been created.

Main publications:


Large nonlinear optical activity of chromophores with divinylquinoxaline conjugated π-bridge

A.A. Kalinin, S.M. Sharipova, T.I. Burganov, A.I. Levitskaya, O.D. Fominykh, T.A. Vakhonina, N.V. Ivanova, A.R. Khamatgalimov, S.A. Katsyuba, M.Yu. Balakina
Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 58-66

 

 

 


Composite materials containing chromophores with 3,7-(di)vinylquinoxalinone π-electron bridge doped into PMMA: Atomistic modeling and measurements of quadratic nonlinear optical activity
O.D. Fominykh, A.A. Kalinin, S.M. Sharipova, A.V. Sharipova, T.I. Burganov, M.A. Smirnov, T.A. Vakhonina, A.I. Levitskaya, A.A. Kadyrova, N.V. Ivanova, A.R. Khamatgalimov, I.R. Nizameev, S.A. Katsyuba, M.Yu. Balakina
Dyes and Pigments, 2018, 158, 131-141



 

Application of Jamin interferometer for the determination of thin transparent polymer films thickness in the visible range
A.S. Mukhtarov, M.A. Smirnov, T.A. Vakhonina, M.Yu. Balakina
Instruments and Experimental Techniques, 2017, 60 (3), 439-443

 

         

 

 

Measurements of the electro-optic coefficients of polymer films based on branched methacrylic copolymers containing azo chromophores
M.A. Smirnov, A.S. Mukhtarov, N.V. Ivanova, T.A. Vakhonina, G.N. Nazmieva, I.R. Nizameev, V.V. Bazarov, M.Yu. Balakina, O.G. Sinyashin
Mendeleev Communications, 2016, 26 (6), 518-520

 

 


Publications of the laboratory in 2014-2019:


2014
1. T.A. Vakhonina, M.Yu. Balakina, N.V. Ivanova, G.N. Nazmieva, S.V. Kurmaz, I.S. Kochneva, M.L. Bubnova, E.O. Perepelitsyna, N.N. Smirnov, A.V. Yakimansky, O.G. Sinyashin. Synthesis and nonlinear optical properties of branched copolymers with covalently attached azochromophores. Europ. Pol. J., 2014, 50, 158-167; https://doi.org/10.1016/j.eurpolymj.2013.10.020.
2. T.А. Vakhonina, N.V. Ivanova, N.N. Smirnov, A.V. Yakimansky, M.Yu. Balakina, O.G. Sinyashin. The study of nonlinear-optical properties of methacrylic (co)polymers with azochromophores in the side chain. Mendeleev Commun., 2014, 24, 138-139; https://doi.org/10.1016/j.mencom.2014.04.002.
3. M.A. Smirnov, A.S. Mukhtarov, N.V. Ivanova, T.A. Vakhonina, V.V. Semashko, M.Yu. Balakina. The effect of chromophores concentration on the nonlinear optical activity of methacrylic comopymers with azochromophores in the side chain. J. Phys.: Conf. Ser., 2014 560, 012015 (1-4); DOI: 10.1088/1742-6596/560/1/012015.

2015
1. G.N. Nazmieva, T.A. Vakhonina, N.V. Ivanova, A.Sh. Mukhtarov, N.N. Smirnov, A.V. Yakimansky, M.Yu. Balakina, O.G. Sinyashin. Testing of the ways for synthesis of new nonlinear optical epoxy-based polymers with azochromophores in the side chain. Europ. Pol. J., 2015, 63, 207-216; https://doi.org/10.1016/j.eurpolymj.2014.12.003.
2. G.N. Nazmieva, T.A. Vakhonina, S.M. Sharipova, N.V. Ivanova, A.Sh. Mukhtarov, M.A. Smirnov, M.Yu. Balakina, O.G. Sinyashin. New epoxy-amine oligomers with chromophore-containing dendritic fragments in the side chain and determination of their nonlinear-optical characteristics. Mendeleev Commun., 2015, 25, 101-102; https://doi.org/10.1016/j.mencom.2015.03.006.
3. A.I. Levitskaya, A.A. Kalinin, O.D. Fominykh, M.Yu. Balakina. Theoretical predictions of nonlinear optical characteristics of novel chromophores with quinoxalinone moieties. Comput. Theor. Chem., 2015, 1074, 91-100; https://doi.org/10.1016/j.comptc.2015.10.001.

2016

1. O.D. Fominykh, A.V. Sharipova, M.Yu. Balakina. The choice of appropriate density functional for the calculation of static first hyperpolarizability of azochromophores and stacking dimers. Int. J. Quant. Chem., 2016, 116 (2), 103-112; https://doi.org/10.1002/qua.25029.
2. O.D. Fominykh, M.Yu. Balakina, T.I. Burganov, S.A.Katsyuba. The effect of stacking arrangement on the conjugation in azochromophores revealed by combination of Raman spectroscopy and DFT calculations. Chem. Phys. Let., 2016, 659, 242-246; https://doi.org/10.1016/j.cplett.2016.07.043.
3. N.A. Nikonorova, M.Yu. Balakina, O.D. Fominykh, A.V. Sharipova, T.A. Vakhonina, G.N. Nazmieva, R.A. Castro, A.V. Yakimansky. Dielectric spectroscopy and molecular modeling of branched methacrylic (co)polymers containing nonlinear optical chromophores. Mater. Chem. Phys., 2016, 181, 217-226; https://doi.org/10.1016/j.matchemphys.2016.06.052.
4. A.I. Levitskaya, A.A. Kalinin, O.D. Fominykh, I.V. Vasiliev, M.Yu. Balakina. Nonlinear optical properties of chromophores with indolizine donors: theoretical study. Comput. Theor. Chem., 2016, 1094, 17–22; https://doi.org/10.1016/j.comptc.2016.08.021.
5. С.М. Шарипова, А.А. Калинин. Синтез 3-дициановинил- и 3-(Е)-(2-дицианометилен-3-циано-2,5-дигидрофуран-4-ил)винил-хиноксалин-2-онов. Бутлеровские сообщения, 2016, 46, 97-103.
6. M.A. Smirnov, A.S. Mukhtarov, N.V. Ivanova, T.A. Vakhonina, G.N. Nazmieva, I.R. Nizameev, V.V. Bazarov, M.Yu. Balakina, O.G. Sinyashin. Measurements of electro-optic coefficient of polymer films based on branched methacrylic copolymers containing azochromophores. Mendeleev Commun., 2016, 26, 518-520; https://doi.org/10.1016/j.mencom.2016.11.020.
7. A.I. Levitskaya, O.D. Fominykh, M.Yu. Balakina. Modeling of Nonlinear Optical Activity of Epoxyamine Oligomers with Binary Chromophore Groups. Macromol. Theor. Simul., 2016, 25, 591-600; https://doi.org/10.1002/mats.201600054.

2017
1. Yu.B. Dudkina, K.V. Kholin, T.V. Gryaznova, D.R. Islamov, O.N. Kataeva, I.Kh. Rizvanov, A.I. Levitskaya, O.D. Fominykh, M.Yu. Balakina, O.G. Sinyashin, Yu.H. Budnikova. Redox trends in cyclometalated palladium(II) complexes. Dalton Trans., 2017, 46, 165-177; DOI: 10.1039/C6DT03786K.
2. S.M. Sharipova, A.A. Kalinin. 3-Cyano-2-(dicyano)methylene-4-methyl-2,5-dihydrofurans in the synthesis of nonlinear-optical chromophores. Chem. Heterocycl. Compd., 2017, 53, 36–38. [Khim. Geterotsikl. Soedin., 2017, 53, 36-38.] [https://link.springer.com/content/pdf/10.1007%2Fs10593-017-2017-9.pdf].
3. A.A. Kalinin, S.M. Sharipova, T.I. Burganov, Yu.B. Dudkina, A.R. Khamatgalimov, S.A. Katsyuba, Yu.H. Budnikova, M.Yu. Balakina. Push-pull isomeric chromophores with vinyl- and divinylquinoxaline-2-one units as π-electron bridge: Synthesis, photophysical, thermal and electro-chemical properties. Dyes Pigm., 2017, 146, 82-91; https://doi.org/10.1016/j.dyepig.2017.06.062.
4. A.I. Levitskaya, A.A. Kalinin, O.D. Fominykh, M.Yu. Balakina The effect of rotational isomerism on the first hyperpolarizability of chromophores with divinyl quinoxaline conjugated bridge. Chem. Phys. Lett., 2017, 681, 16-21; https://doi.org/10.1016/j.cplett.2017.05.043.
5. A.S. Mukhtarov, M.A. Smirnov, T.A. Vakhonina, M.Yu. Balakina. Application of Jamin interferometer for the determination of thin transparent polymer films thickness in the visible range. Instruments and Experimental Techniques, 2017, 60, 3, 439–443. (А.Ш. Мухтаров, М.А. Смирнов, Т.А. Вахонина, М.Ю. Балакина Применение интерферометра Жамена для определения толщины тонких полимерных пленок, прозрачных в видимой области. Приборы и техника эксперимента. 2017, № 3, 140-144); [link.springer.com/content/pdf/10.1134%2FS0020441217020191.pdf]
6. A.A. Kalinin, M.A. Smirnov, L.N. Islamova, G.M. Fazleeva, T.A. Vakhonina, A.I. Levitskaya, O.D. Fominykh, N.V. Ivanova, A.R. Khamatgalimov, I.R. Nizameev, M.Yu. Balakina. Synthesis and characterization of new second-order NLO chromophores containing the isomeric indolizine moiety for electro-optical materials. Dyes Pigmю, 2017, 147, 444-454; https://doi.org/10.1016/j.dyepig.2017.08.047.
7. A.A. Kalinin, S.M. Sharipova, T.I. Burganov, Yu.B. Dudkina, A.R. Khamatgalimov, S.A. Katsyuba, Yu.H. Budnikova, M.Yu. Balakina. Push-pull isomeric chromophores with vinyl- and divinylquinoxaline-2-one units as p-electron bridge: Synthesis, photophysical, thermal and electro-chemical properties. Dyes Pigm., 2017, 146, 82-91; https://doi.org/10.1016/j.dyepig.2017.06.062.

2018
1. A.A. Kalinin, G.G. Yusupova, T.I. Burganov, Yu.B. Dudkina, L.N. Islamova, A.I. Levitskaya, A.R. Khamatgalimov, S.A. Katsyuba, Yu.H. Budnikova, M.Yu. Balakina. Isomeric indolizine-based p-expanded pushepull NLOchromophores: Synthesis and comparative study. J. Molec. Struct., 2018, 1156, 74-82; https://doi.org/10.1016/j.molstruc.2017.11.077.
2. T.I. Burganov, S.A. Katsyuba, T.A. Vakhonina, A.V. Sharipova, O.D. Fominykh, M.Yu. Balakina. Supramolecular Organization of Solid Azobenzene Chromophore Disperse Orange 3, its Chloroform Solutions and PMMA-based Films. J. Phys. Chem. C, 2018, 122 (3), 1779-1785; https://doi.org/10.1021/acs.jpcc.7b10543.
3. M.Yu. Balakina, O.D. Fominykh, T.I. Burganov, A Sharipova, S.A. Katsyuba. Chromophores Supramolecular Organization in Polymer Materials with Quadratic Nonlinear-Optical Activity: Symmetry Aspects. Proceedings, 2018, 2, 70; https://doi.org/10.3390/proceedings2010070.
4. M.Yu. Balakina, O.D. Fominykh, T.A. Vakhonina, M.A. Smirnov, A.V. Sharipova. Polymer electrets with quadratic Nonlinear-optical activity. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25 (3), 778-782. DOI: 10.1109/TDEI.2017.007028.
5. T.A. Vakhonina, A.A. Kadyrova, T.M. Sarvarov, M.A. Smirnov, N.V. Ivanova, A.R. Khamatgalimov, M.Yu. Balakina, O.G. Sinyashin New polymethacrylic nonlinear optical materials containing multichromophores in the side chain. Mendeleev Commun., 2018, 28, 272-274; https://doi.org/10.1016/j.mencom.2018.05.014
6. N.V. Kalacheva, G.R.Tarasova, G.M. Fazleeva, G.V. Cherepnev. Water-soluble polyol-methanofullerenes as mitochondria-targeted antioxidants: Mechanism of action. Bioorg. Med. Chem. Lett., 2018, 28, 1097-1100; https://doi.org/10.1016/j.bmcl.2018.02.009.
7. A.A. Kalinin, S.M Sharipova, T.I. Burganov, A.I Levitskaya, Y.B. Dudkina, O.D. Fominykh, A.R. Khamatgalimov, S.A. Katsyuba, Y.H. Budnikova, M.Yu Balakina. High thermally stable D–π–A chromophores with quinoxaline moieties in the conjugated bridge: Synthesis, DFT calculations and physical properties. Dyes Pigm., 2018, 156, 175-184; https://doi.org/10.1016/j.dyepig.2018.04.002.
8. O.D. Fominykh, A.A. Kalinin, S.M. Sharipova, A.V. Sharipova, T.I. Burganov, M.A. Smirnov, T.A. Vakhonina, A.I. Levitskaya, A.A. Kadyrova, N.V. Ivanova, A.R. Khamatgalimov, I.R. Nizameev, S.A. Katsyuba, M.Yu. Balakina. Composite materials containing chromophores with 3,7-(di)vinylquinoxalinone π-electron bridge doped into PMMA: Atomistic modeling and measurements of quadratic nonlinear optical activity. Dyes Pigm., 2018, 158, 131-141; https://doi.org/10.1016/j.dyepig.2018.05.033
9. I.V. Vasilyev, O.D. Fominykh, M.Yu. Balakina. Dynamic first hyperpolarizability of trans- and cis- isomers of Azobenzene Chromophore DO3 calculated at DFT and MP2 levels. Comput. Theor. Chem., 2018, 1139, 1–8; https://doi.org/10.1016/j.comptc.2018.06.017.
10. G.N. Nazmieva, T.А. Vakhonina, N.V. Ivanova, A.V. Sharipova, O.D. Fominykh, M.A. Smirnov, M.Yu. Balakina, Oleg G. Sinyashin. Development of new nonlinear optical polymers based on epoxy- amine oligomers with bi-chromophore fragments in the side chain. Polymer, 2018, 149, 253-265; https://doi.org/10.1016/j.polymer.2018.07.007.
11. A.A. Kalinin, G.M. Fazleeva, T.I. Burganov, L.N. Islamova, A.I. Levitskaya, Yu.B. Dudkina, G.R. Shaikhutdinova, G.G. Yusupova, M.A. Smirnov, T.A. Vakhonina, N.V. Ivanova, A.R. Khamatgalimov, S.A. Katsyuba, Yu.H. Budnikova, I.R. Nizameev, M.Yu. Balakina. Nonlinear optical activity of push–pull indolizine-based chromophores with various acceptor moieties. J. Photochem. Photobiol. A Chemistry, 2018, 364, 764-772; https://doi.org/10.1016/j.jphotochem.2018.07.018.
12. T.I. Burganov, S.A. Katsyuba, S.M. Sharipova, A.A. Kalinin, A. Monari, X. Assfeld. Novel quinoxalinone-based push–pull chromophores with highly sensitive emission and absorption properties towards small structural modifications. Phys. Chem. Chem. Phys., 2018, 20, 21515-21527; DOI: 10.1039/c8cp03780a.

2019
1. A.A. Kalinin, A.I. Levitskaya, T.I. Burganov, S.A. Katsyuba, O.D. Fominykh, M.Yu. Balakina, S.M. Sharipova, T.A. Vakhonina, A.R. Khamatgalimov, N.V. Ivanova. Large nonlinear optical activity of chromophores with divinylquinoxaline conjugated π-bridge. J. Photochem. Photobiol. A Chemistry, 2019, 370, 58-66; https://doi.org/10.1016/j.jphotochem.2018.10.034.
2. N.I. Shalin, O.D. Fominykh, M.Yu. Balakina. Effect of acceptor moieties on static and dynamic first hyperpolarizability of azobenzene chromophores. Chem. Phys. Lett., 2019, 717, 21-28; https://doi.org/10.1016/j.cplett.2018.12.045.