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During the past decade dramatic progress has been made in calculating the binding energies of molecules.
This is the result of two advances reported in 1989: an accurate method for solving the electroidmgehro
equation that is applicable to a broad range of moleettlies CCSD(T) methodand families of basis sets

that systematically converge to the complete basis setHithi correlation consistent basis sets. The former
provides unprecedented accuracy for the prediction of a broad range of molecular properties, including molecular
binding energies. The latter provides a means to systematically approach the complete basis set limit, i.e., the
exact solutions of approximations to the Sahinger equation. These two advances combined with a thorough
analysis of the errors involved in electronic structure calculations lead to clear guidelines for ab initio
calculations of binding energies, ranging from the strong bonds derived from chemical interactions to the
extremely weak binding due to dispersion interactions. This analysis has also led to surprises, e.g., it has
shown that the MgllerPlesset perturbation theory is unsuitable for calculation of bond energies to chemical
accuracy, i.e., with errors of less that 1 kcal/mol. This applies whether one is interestbdalutebond
energies orelative bond energies. Although the analysis presented here is focused on the calculation of
molecular binding energies, this same approach can be readily extended to other molecular properties.

1. Introduction “The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry

The concept of chemical bonds and the determination of bond are thus completely known, and the difficulty is only that the

energies are central to chemistry. The making and breaking of S .
chemical bonds in molecules governs the behavior of many exact _appllcatlon of theseulaws leads to equations much too
processes important to our modern world, from the production complicated to be soluble.

of energy and pollutants in an automobile engine to the catalytic Despite this difficulty, scientists such as Pauling, Mulliken, and
processes that convert raw materials into materials of value toothers used the framework provided by quantum mechanics to
society. Weaker molecular interactions are also important. discover the general laws which govern the structure and
Hydrogen bonds play a critical role in a wide range of chemical energetics of molecules. This work had an enormous impact
processes, especially biochemical processes. Both inter- andn chemistry and later led to the award of Nobel Prizes to these
intramolecular forces determine the properties of polymers, and two individuals.

a wide range of materials has been developed by varying these In his classic book,The Nature of the Chemical Bond
interactions in a systematic manner. Obtaining a detailed Pauling stated that “there is a chemical bond between two atoms
understanding of molecular interactions and molecular binding or groups of atoms in case that the forces acting between them

energies is one of chemistry’s “Grand Quests.” ~are such as to lead to the formation of an aggregate with
With the discovery of the mathematical equation governing sufficient stability to make it convenient for the chemist to
the behavior of atoms and molecules in the mid-1920s consider it as an independent system.” This definition is still

Schralinger equatiorrthe pathway was opened for calculating  valid today, although what is considered an “independent
molecular binding energies from first principles. In fact, system” is much different than in Pauling’s time. Through the
physicists immediately set about computing the binding energy gevelopment of sophisticated synthetic techniques and sensitive
of Hz with great success. This work not only provided evidence measurement technologies, experimental physical chemists have
supporting the radical new quantum mechanics, but was the firstyrenared and characterized a wide range of weakly bound
successful prediction of a chemical bond energy. Unfortunately, mojecular complexes. This is nowhere better illustrated than in
what was possible for fHwas not possible for other molecules,  iha recent report by Giese, Gentry, and co-workése also

and, as far as the rest of chemistry was concerned, the commentys 4 of the synthesis and characterization of the helium dimer

by P. A. M. Dirac in 1929 held: a molecule that is bound by only 1 milliKelvin (0.7 crh 0.002

kcal/mol). This work by experimental physical chemists has
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In the present article, we will consider all of the types of hundreds of basis sets in the literature, some of general use,
interactions that can give rise to a stable molecule or molecular others specialized for calculations of one property or another.
complex. Specifically, four types of interactions will be As we will show, this situation no longer exist8ecause of
considered. advances in the past decade, it is now possible to provide a

Chemical interactions which result from the intimate  clear road map for calculating accurate molecular binding
sharing of electrons between the two atoms involved in the bond. energies. Although the focus of this article is on the calculation
Chemical bonds represent the strongest molecular interactionsof binding energies, the approach used here applies to other
and their strengths vary from tens to hundreds of kcal/mol, molecular properties as weéfl. The same analysis is also
although most fall in the range of 75 to 150 kcal/mol. applicable to electronic structure methods not explicitly con-

Hydrogen-bond interactions which result from the sharing ~ Sidered here. Thus, this article presents a prototype case study,
of a hydrogen atom between two other atoms. The strengths ofthe essence of which could be repeated for many other molecular
hydrogen bonds vary from a few kcal/mol to tens of kcal/mol Properties and computational methods.

and are typically weaker than chemical bonds by a factor of 10  In the following section we will discuss the sources of errors
or more. in the solution of the electronic Schitimger equation. It is

critical to be clear about this, because the errors can be of
different sign and, when they are, their cancellation can lead to
confusing results (as we shall see). In this article, we will focus
on two very popular techniques for solving the electronic
Schralinger equation: MgllerPlesset perturbation theory and

Electrostatic interactions, which arise from the classical
electrostatic interactions between the multipole moments of
molecules. In these systems, which we shall collectively refer
to as “weakly bound molecules,” binding energies range from
a fraction of a kcal/mol to a few kcal/mol, another order of . . .

coupled cluster theory. In the third section, we review the

magnitude weaker than hydrogen bonds. ) . -
essential features of these two methods. Basis set expansion

Dispersion interactions which result from the instantaneous . . .
. ) . . techniques are used to solve the Sdimger equation and, so,
correlation between the fluctuations in the electronic charge .

. . o . .2~ in the fourth section, we discuss the selection of basis sets for
clouds of the two interacting systems. Binding energies arising - .
. S g molecular calculations. The use of basis sets to convert the
solely from dispersion interactions range from hundredths of a

kcal/mol to a few tenths of a kcal/mol. We shall refer to these Schrujmger equation into a more readily soluple algebraic
B N equation has been a real boon in quantum chemistry. However,
systems as “very weakly bound molecules.

o . it has also been the source of many problems. Finally, with all
As can be seen, molecular binding energies vary from

o of this completed, we discuss the calculation of molecular
hundredths of a kcal/mol to hundreds of kcal/mol, a variation P

¢ h q ¢ tude! The chall h binding energies in the fifth and sixth sections.
of more than 4 orders o _magnltu e The challenge to the In this article, we will focus on the solution of the electronic
guantum chemist, and it is a daunting one,

_ _ is to develop gepiginger equation and, therefore, will be concerned Bigh
theoretical and computational approaches that are capable ot negative of the interaction energy at the equilibrium

accurately describing molecular binding energies over this wide geometry{ R¢} of the molecule. By considerire, we eliminate

range of values. . o errors associated with the solution of the nuclear Sainger
Although solving the Schidinger equation is still a chal-  equation, although the need to extrBgtfrom the experimental
lenging task, the development of sophisticated computational gata can lead to larger experimental uncertaintié3dthan in

methods for solving the equation, coupled with an exponential p, (because of uncertainties in the vibrational frequencies).
growth in computing power over the past two decades, has made

it possible to compute interaction energies for a broad range of 2. Errors in Electronic Structure Calculations
molecules. These capabilities can be found in a number of

quantum chemistry codes, including GAUSSIAADPAC & There are two sources of errors in the solution of the
GAMESS? MOLPRO8 ACES 11° and DALTONZO For sma,\ll electronic Schirdinger equation: thbasis set corergence error
molecules. the accu,racy of the calculations now rivals that @nd theelectronic structure method erroin practice these errors

obtained from experiment for some molecular properties. For are often |nterm|ngled to the extent that it may not .be clear,
large molecules, such calculations often serve as invaluable®VeN to the experienced researcher, what the relative importance

guides to rationalizing the experimental data. Of particular Of the two types of errors is (this knowledge is usually gained

importance is the fact that the mathematical calculations can fTom experience over ‘h'? course of years of work). It is
be extended to classes of molecules, e.g., radicals and ions,”oneth.eIeSS essential to distinguish betyvegn these two .types of
whose existence in the laboratory may be too ephemeral to €ITors if we are to understand the limitations of atomic and
permit accurate measurements. This is important not only for molecular calculatlons._ . .

obtaining a quantitative understanding of many chemical Assume th"{[ a family of.ba5|s sets is used to solve the
processes, e.g., combustion or plasma processing, but it alsdelectronlc Schitdinger equation, where the members of the

provides chemists with a more complete picture of the nature family are specified by the labeh" and that, as " increases, .
of the chemical bond. the basis set becomes more and more complete. For any given

Despite the increasingly important role that quantum chem- basis setfi,” the basis set convergence errorlgis
istry calculations play in modern chemical research, molecular bs,
calculations often appear to be a “black art.” It is difficult for AD¢(M;n) = Dg(M;n) — D(M; ) 1)
the novice, if not the expert, to confidently thread his or her
way through the bewildering array of choices presented by whereDg(M;n) is the value of the binding energy obtained with
modern-day computational approaches to solving the '8ehro basis set 1" and method “M”, andDg(M;) is the value
inger equation. What method should be used to solve the obtained with a complete basis set, CBS, i.e.nas . In
equation? There are more than a dozen ab initio methods forother wordsPe(M; ) is the value of the binding energy obtained
solving the Schidinger equation, not counting density functional by exactly solving the Schidinger equation using electronic
theory with its large list of exchange and correlation functionals. structure method “M.” Because of the ordering of the basis sets,
What basis set should be used in the calculation? There areADLYM;n) will decrease to zero as:® increases. The detailed
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form of ADPYM;n) depends, of course, on the electronic
structure method (“M”) being used.

The basis set convergence error is different than the error
arising from the use of a given electronic structure method “M”
to solve the Schidinger equation (HartreeFock, singles and
doubles configuration interaction, second-order perturbation
theory, etc.). The electronic structure method errorDgiis

ADM = D(M; ) — D (expt’l) 2)

whereDg(M; ) is defined above anB¢(expt’l) is the experi-
mental value of the binding energ&D¢M is also referred to as
theintrinsic error in the binding energy for method “M.” It is
the error in the binding energy that would result if the
Schralinger equation was solved exactly using method “M”; it
does not depend on the basis g8t (

To complete the list of error types involved in the solution
of the electronic Schidinger equation, we also need to define
the error associated with a given calculation, i.e., a given choice
of electronic structure method (“M”) and basis set’j* The
calculational error is given by

lIIIII\VVITITI'II\II\III'\\II

ADS(M;n) = D(M;n) — D (expt'l) (3)

We sometimes refer taDL29qM;n) as theapparent errorto 2 3 4 5
clearly distinguish it from thentrinsic error for the method
“M”. Note that from egs 1 and 2 the calculational error is simply

the sum of the basis set and method error: n (basis set)

Figure_ 1. Type l and Il errors for_the calculation of molecular binqling
ADecalc(M;ﬂ) _ ADebs(M;n) + ADeM 4) Fir?q?tr.gleSDe(oo) refers to the binding energy at the complete basis set

If the basis set convergence error and the electronic structurepf the interactions between closed shell molecules, although it
method error have different signs, which, as we shall see below, should be noted that the carefully designed Cl methods of Liu
they sometimes do, the calculational error can be less than theand McLea® (or generalizations therei§f do provide a means
intrinsic error. This point is illustrated in Figure 1, which shows of using CI techniques to address problems such as those
two common error type¥ For Type |, the calculatede discussed here.
approaches the experimental value from below, never reaching 3.1, Perturbation Theory Methods. In Mgller—Plesset
the experimental value even for a complete basis set. In this perturbation theory, it is assumed that electron correlation is a

caseADAqM; n) is always greater thanDe. For Type I, perturbation to the Hartreg=ock Hamiltonian, i.e.,
on the other hand, the calculatBdovershoots the experimental
De for sufficiently largen. In this case AD£2qM;n) can be H=H,+ iH; (5)

less thanADM for somen. In fact, in the figureADCa(M;n)

~ 0 for n = 3, leading the unsuspecting researcher to incorrectly where Hy is the Hartree-Fock Hamiltonian andiH;, the
conclude that method “M” and basis set= 3 satisfactorily perturbation, is the difference between the Harti€eck
describe the binding in this molecule. Unfortunately, this averaged interelectronic interaction and the eX8{r; interac-
situation is not rare, as will be illustrated by examples discussedtion in the full Hamiltonian. With the partitioning in eq 5, the

in Section 5. wave function and energy can also be written as a power series
in A
3. Approximate Methods for Solving the Electronic
Schradinger Equation W=W, + AW, + ,121112 + .. (6)
Since the discovery of the Scitinger equation in 1925 5 .
26, a number of approximate methods have been developed to E=E,+AE, + A’E, + 2%E;+ A'E, + ... )

solve the electronic Schdinger equation for molecules. In this

work we will focus on two very popular approaches: the and the wave function and energy are computed order by order.
Mgller—Plesset perturbation theory (MP2, MP3, MP4, ...) and For sufficiently small perturbations, onl/, (the Hartree-Fock
the coupled cluster methods (CCSD, CCSDT, ...). Unlike the wave function) and¥; (the first-order wave function) are
Hartree-Fock wave function on which they are based, perturba- important. For larger perturbation®¥,, W3, ... must also be
tion theory and coupled cluster methods take the detailed effectstaken into account.

of electron correlation into account, a “must” for accurate A wave function throughth order in perturbation theory is
molecular predictions. They are also size-extensive (see refs 13sufficient to calculate the energy torn(21)th order. ThusEg
and 14). This means that the definition of the computed + E; is computed by taking the expectation value of the
interaction energies is unambiguous. We will not discuss Hamiltonian, eq 5, over the Hartre&ock wave function and
configuration interaction methods in this article. “Less than full” is just the HartreeFock energy. Similarly, W, and ¥;

Cl methods do not usually provide size-extensive descriptions determine bothEx(MP2) and E3(MP3); Wo, W4, and W,
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determineE4(MP4) andEs(MP5); etc. Becauskl; contains at
most two-electron operatord’; just contains double excitations
(D) relative to the HartreeFock wave function ané, andE;
only take double excitations into accountHpthe contributions

J. Phys. Chem. A, Vol. 104, No. 40, 2008065

In eq 9,1t; generates all possible single excitations when it
operates o, t; generates all possible double excitations, etc.
Truncation of eq 9 a + t, gives the CCSD method, truncation

att; + t, + tz gives the CCSDT method, and so on. Because of

of the double excitations to the energy are independent of onethe exponential form of the excitation operator, the coupled

another; inEs, they are coupled. The second-order correction
to the wave function¥,, contains single, double, triple, and
quadruple (SDTQ) excitations, and Ea and Es take single,

triple, and quadruple excitations as well as double excitations

into account.
The computational cost of perturbation theory calculations

increases rapidly with the order of perturbation theory and the
size of the basis set. If the number of functions in the basis set
is N, formal analysis of the perturbation theory equations shows

that second-order perturbation (MP2) theory scalds®athird-
order perturbation (MP3) theory ablf, and fourth-order
perturbation (MP4) theory aN’. Most correlated molecular

cluster wave function contains not only all of the excitations
included in T, but all of the products of excitations included in
T. For example, for the CCSD method the wave function is

w=1+g+%yq+g+%mﬁ+qg+%mﬂg+
1 1
51 titity 57ty + .| Wy (10)

where the sum extends to the maximum number of excitations
allowed. Thus, the CCSD wave function contains the effects of
triple excitations that are products of three single excitations or

calculations reported to date have used MP2 theory, which a single excitation times a double excitation (called disconnected

corrects for many of the major deficiencies in the Hartree

triple excitations); disconnected quadruple excitations that are

Fock method. With the increasing capabilities offered by modern products of four single excitations, two single excitations times
computing technology, MP4 calculations have become more a double excitation, or two double excitations; and so on. The
common. There have recently been implementations of bothinclusion of higher-order excitations W is very important

fifth- and sixth-ordet’ perturbation theory in the Gaussian

because, as Sinanoglfirst observed, the largest component

program. However, the steep dependence of these techniquesf higher-order excitations are often products of lower-order

on the size of the basis seN{ and N°, respectively) has
prevented their use in all but a restricted set of calculations.

There is one last issue to be addressed in this sectimn

question of the convergence of the perturbation theory expan-

sion. Perturbation theory works well when the perturbation is

excitations. Thus, for most moleculegt, is the largest
contributor to quadruple excitations. The connected quadruple
excitations represented lyare small because they require all
four electrons to be in the same region of space.

There is a simple, appealing physical picture provided by the

small, and the theory has been successfully used in numerousoupled cluster wave function. For a set of noninteracting
areas in molecular quantum mechanics. It has long beenelectron pairs, safl molecules of H at very large intermo-
recognized that the reliance of conventional perturbation theory lecular separations, the CCSD wave function provides an exact

on the Hartree Fock Hamiltonian and wave function limits the
radius of convergence of MPexpansions to those molecules
for which a single configuration is a good approximatiéa?

description of the system. That is, tle®nnected it and t;
excitations plus thelisconnectedtits, tito, tty, etc.) excitations
included in the CCSD wave function are all that are required

More recently, it has become apparent that convergenceto exactly describe the set M noninteracting electron pairs.

difficulties in the MFh expansion are not limited to molecules

As the separation between the electron pairs decreases, the

whose zero-order wave function is poorly described by a single charge clouds begin to overlap and the contribution of the higher

configuration?®=22 These latter authors found that such classical

orderconnecteaxcitations increases: firstbecomes important

single configuration systems as hydrogen fluoride, with a weight (three electrons in the same region of space), and tih@aur

of approximately 95% for the Hartred-ock wave function in

electrons in the same region of space), and so on. Thus, to the

the MPh expansion, can give rise to expansions that are either extent that molecules are composed of well-localized electron

slowly converging or divergent. The physical reason for this
behavior has yet to be firmly established, but Cremer and He

pairs and are well described by the Hartré®ck wave function,
the CCSD wave function should provide an accurate description

note that it appears to be associated with the presence of multipleof their electronic structure. In Hevan Mourik and Dunningf
sets of lone pairs in the same region of space (for a mathematicalhave shown that the contribution of bdgrandt, to De increases
analysis of the problem, see refs 20(b) and 23). We will see exponentially with decreasing R and thaDe(t;+t;) >

evidence of this problem in the MR alculations discussed here,
although it is less prominent in the calculation @f than in
calculation of other molecular properti&s.

3.2. Coupled Cluster Methods.The coupled cluster method
is a latecomer to electronic structure theory. It was first

ADg(t3) > AD¢(ts).

Unfortunately, it has been found that, for typical molecular
geometries, the effects of connected triple excitatiog)ajust
be explicitly included in the coupled cluster wave function to
obtain high accuracy. The CCSDT metRbdcales adN® and

developed to treat the nuclear problem in the late 1950s by thus is computationally very expensi#&This has led to a

Coester and Kmmel2* adapted by CizeR for quantum
chemical applications, and popularized by Bartlett and co-
workers26=30 |n coupled cluster theory, the wave function is
given by

v=e ¥, (8)
whereT is a sum of excitation operators
T=t,+t,+t;+ ... 9)

number of attempts to approximate the effect of connected triple
excitations in the coupled cluster CCSDT wave functdff.

The CCSD(T) method of Raghavachari et®lwhich includes

the effects oft; perturbationally, has been found to provide an
excellent compromise between accuracy and computational
cos®>36 (for additional insight into the underpinnings of this
approach, see ref 37). In fact, when used with large basis sets,
the CCSD(T) method yields molecular binding energies and
many other molecular properties that are comparable to those
obtained from all but the most sophisticated experiments (see
refs 38, 39, 40, and 41). The CCSD(T) method scald¥®der
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55 is evident in the figure. Without a well-defined path to the CBS
limit, it is not be possible to separate the contributions to the
readily observed calculational errors. A hierarchy of basis sets,
which provide a systematic approach to a complete basis set,
would allow us to cleanly separate the electronic structure
- n method error ADJM) from the basis set convergence error
50 |- ® [AD&Sn)] and enable us to better understand the source of errors
in molecular calculations. The correlation consistent basis sets
- provide such a family.
] 4.1. Construction of Correlation Consistent Basis Set$
p® = Although the importance of the basis set in limiting the accuracy
- | of electronic structure calculations on molecules was well
45 |- ] recognized by the end of the 1960s, the principles involved in
i ] constructing basis sets for use in correlated molecular calcula-
tions were not understood. As a result, the sets used in most
sl early correlated calculations were based on experience gained
from Hartree-Fock calculations. The first advance came in 1987
- when Almldf and Taylof* showed that basis sets constructed
40 |- - from atomic natural orbitals (ANOs) provided accurate solutions
i n of the molecular Schdinger equation. Further, Alrilcand
B m Taylor found that the occupation numbers of the ANOs fell into
u clearly defined groups. Using this fact, they constructed a
hierarchy of contracted basis sets by adding groups of secondary
natural orbitals with nearly equal occupation numbers to the
35 Lo L e principal natural orbitals. The accuracy of the calculations
0 50 100 150 200 250 300 systematically improved as larger and larger ANO sets were
used, up to the limit imposed by the set of primitive Gaussian
. . functions used to represent the natural orbitals. This concept
Number of Basis Functions was extended by Widmark et.&to atoms in the second row

Figure 2. Values ofDe for the water dimer computed with the MP2  f the periodic chart and by Bauschlicher and co-workers to
method and a number of popular basis sets. Calculated values have[he third row?6

: > . . %6 including the transition metal§(see also Pou-
been corrected for basis set superposition error using the counterpoise ; . . .
correction. Amerigo et al*®) The major problem with the ANO sets is

efficiency. Any calculation that uses the sets has to compute
integrals over all of the primitive functions included in the set.
Since very large primitive sets are used in constructing the ANO
sets, the cost of integral calculations can be prohibitive for all
but the smallest ANO sets.

At the time that Almld and Taylor were exploring the use
Since the first application of quantum mechanics to chemistry of ANO sets, Dunningf was carrying out a systematic study of
by Heitler and Londori? basis sets have been used to convert the basis set requirements for describing correlation effects in

the electronic Schidinger equation into an algebraic equation. atoms. Whereas Alrifoand Taylor chose the occupation
At first, the basis sets used were simple representations of thenumbers of the natural orbitals as a measure of the importance
atomic orbitals and the method was referred to as the “linear of ANOs to the wave function, Dunning chose the contribution
combination of atomic orbitals,” or LCAO, method. Later, as that a basis function makes to the correlation energy. This choice
theoretical chemists began to employ electronic computers tohad a significant side benefit: it moved the criterion from one
solve the resulting equations, it became clear that a simple sethased on orbitals, which are linear combinations of basis
of atomic orbitals did not provide the desired accuraay  functions, to one based on the basis functions themselves,
molecule, although composed of atoms, is composed of allowing a significant reduction in the number of primitive
“deformed” atoms. More flexible atomic sets as well as higher functions included in the sets. For the first row atoms Dunning
angular momentum functions are required to represent thefound that the computed energy lowerings fell into distinct
deformation and correlation effects. As a result, modern basis groups, e.g.,

sets contain several functions of a given angular momentum,

D, (kcal/mol)
H

solution of the CCSD equations plus & step for the
perturbative calculation of the triple excitations.

4. Correlation Consistent Basis Sets

i.e., severak-functions, severgb-functions, and so on, as well AE, ((sp) ~ AE, ((d) (11a)

as functions of high angular momentum, e.g., the most accurate

sets available today include up itdunctions. AE, ((sp) ~ AE, ,(d) ~ AE, (f) (11b)
The main problem with most of the basis sets in common

use today is that they do not provide a well defined path to the AE; (sp) & AE; (d) ~ AE, (f) ~ AE; (9) (11c)

complete basis set (CBS) limit. Although the total energy always

decreases with the addition of functions to a basis set, manywhere AEy+1m(l) is the energy lowering associated with
other properties, including molecular binding energies, do not increasing the number of functions of angular momentym,
show continuous, monotonic improvement. The general situation from mto m+1 (thes andp functions were considered a single

is not unlike that represented in Figure 2, which plots the binding set). Further, the contributions of the three groups to the atomic
energy of water dimer calculated with the MP2 method as a correlation energy were well separated, e.g., for the oxygen atom
function of the basis set (labeled by the number of functions in the first group averaged (with negative and positive ranges as
the set). Although not a scatter plot, no clear convergence patternsubscripts and superscripts, respectiveiy2.0y°° mEg,, the
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Figure 3. Calculation of the valence-electron correlation energy of the first-row atomsleB using the CCSD(T) or RCCSD(T) method and the
correlation-consistent basis sets. (a) Total valence-electron correlation energy (in millihartrees). (b) Fraction of the correlation @veneyy fiac
each atom and basis set, i.Beor{N)/Ecor{®) (in percent).

second group averagetl5.0¢g"%° mE,, and the third group standard set, i.e., a diffuse p-, andd-function to the cc-pVDZ
averaged-3.5 699 mE,. set, a diffuses-, p-, d-, andf-function to the cc-pVTZ set, etc.
With the above information, the schema for constructing In later studies of the electrical properties of molecules, Woon
correlation consistent basis sets is clear. The smallest basis se@nd Dunnin§® found that additional diffuse functions were
the cc-pVDZ set, is formed from the 1ss,2nd 2 atomic HF required to describe the higher order electrical properties of
orbitals plus a single, p, andd primitive Gaussian function. ~ atoms and molecules (polarizabilities, hyperpolarizabilities, etc.).
This yields a [32p1d] set. The next basis set, the cc-pVTZ set, They defined d(oubly)-aug-cc-p) and t(riply)-aug-cc-pviZ
is constructed by adding an optimized set of two primitive sets that were derived from the aug-ccraVsets by adding a
p-, and d-functions plus a single primitivé-function to the second (and third) diffuse function for each angular symmetry
atomic HF orbitals, yielding a E8p2d1f] set, and so on. This  present in the original sets. The designations for the correlation
is the samaufbauscheme found by Alnifcand Taylor# except consistent sets are often abbreviated ta Ycc-pWhzZ), amnz
that primitive basis functions are added to the atomic Hariree (aug-cc-p\hZ), dawz (d-aug-cc-pWiZ), etc.
Fock orbitals, rather than secondary natural orbitals to the Dunning and co-workers have used the above approach to
primary natural orbitals. This pattern results in a very systematic construct correlation consistent basis sets up+06, including
improvement of the basis set. The correlation consistent basisbasis sets for all-electron calculations, for the first-row atoms
sets are collectively designated ccn@/ wheren = 2 represents  (boron through neofj and hydrogen and helium, as well as
the cc-pVDZ setn = 3 the cc-pVTZ setn = 4 the cc-pvVQZ similar sets for the second row atoms (aluminum through
set; and so on. argon)?3 Correlation consistent sets have recently been published
Although the correlation consistent basis sets constructed infor the third-row atoms gallium through kryptdhWork has
the above manner provide an excellent description of the neutralbeen essentially completed on sets for the alkali metals and is
and singly positive ions of atoms, they do not provide an underway on the first-row transition metal atoms.
adequate description of negative ions. The wave functions for 4.2. Extrapolation to the Complete Basis Set Limit.To
negative ions are substantially more diffuse than those for the illustrate the convergence behavior of the correlation consistent
corresponding neutral atoms, and basis sets must be tailored tdasis sets, consider use of the sets to calculate the valence
describe anions. Kendall, Dunning, and Harrfanvestigated correlation energies of the first-row atoms, B through Ne. To
the addition of extra functions to the correlation consistent sets the extent that molecules are collections of perturbed atoms,
for calculations on anions, explicitly optimizing the exponents these calculations provide invaluable insights into the conver-
of the additional functions for the negative ions. Based on these gence behavior of the correlation consistent sets in molecular
results, Kendall et al. constructedigmentedtorrelation con- calculations.
sistent basis sets, denoted aug-ceypVby adding a single In Figure 3a, we plot the absolute values of the valence
diffuse function to each angular momentum present in the correlation energies of the first-row atoms, boron through neon,
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from CCSD(T) or RCCSD(Pp calculations with the cc-phZ 5. Electronic Structure Method Errors for Molecular

basis sets. Note the smooth, monotonic increase in the magnitud&inding Energies

of Econ(N) with increasing basis set size. For the first three basis

sets i = 2—4), the magnitude of the correlation energy The electronic structure method error, or intrinsic error,
increases nearly exponentially with increasinghis led early ~ for a molecular binding energyAD¢(M), is given by eq 2:
users of the correlation consistent sets to use a simpleDe(M;0) — De(expt'l). Thus, to determine the error for electronic

exponential function to extrapolate the resultsrioe 2—4 to structure method “M,” we must first establish the value of the
the complete basis set linfi%:>6 However, this function tends  binding energy at the complete basis set limit{ »). As noted
to underestimate the contribution of the sets with 4. Drawing in the previous section, it is possible to extrapolate binding

an analogy with the convergence of the correlation energy of energies calculated with a sequence of correlation consistent
the helium atom with angular momentum, Mafffhproposed basis sets to the CBS limit. The extrapolations can be quite
the use of inverse powers of the maximum angular momentum accurate if sufficiently large basis sets are used. In the current
in the set to estimate the error in the correlation energy causedstudy, we limit our considerations to small molecules for which

by truncation of the basis set expansion (note that for the first- calculations could be carried out with basis sets as large as
row atoms considered helig.x = n for the correlation consistent  d-aug-cc-pV6Z. Although some generality is lost by this

sets). In fact, the smooth curves plotted in Figure 3a are basediimitation, our studies, as well as those of others, indicate that

on the expansion the conclusions drawn here are broadly applicable. Using this
approach, it is expected that the error in the extrapolated bond
E.(N) =E,+ Eb/n3 + Ec/nS 12) energies is on the order of 6-0.2%, significantly smaller than

the intrinsic errors in the methods themselves.

The root-mean-square deviations of the solid line from the points  In the current study we limit our considerations to valence
are just 0.02 (B), 0.03 (C), 0.05 (N), 0.10 (O), 0.13 (F), and electron calculations. Valence electron calculations are generally
0.15 mE (Ne). The predicted valence correlation energies at capable of predicting molecular binding energies to an accuracy
the CBS limit are—73.1 (B),—100.9 (C),—129.3 (N),—196.2 of 0.5-1%. However, in discussing the intrinsic errors in the
(0), —260.5 (F), and-324.4 mk; (Ne). These latter values may calculated binding energies, we will, whenever possible, report
be compared to estimates of the valence correlation energy ofthe results of calculations that include all of the electrons to
C, O, and Ne 0f-101.2,—195.5, and—322.8 mE, respectively, better understand the nature of the residual error in the valence
an early illustration of the accuracy of the CCSD(T) method. electron calculations. It should be noted that in carrying out
More recently, Halkier and co-workefshave reported good  all-electron calculations it is important to use basis sets designed
success with a simpl¥;? extrapolation based on results from for such calculations (see, e.g., ref 52). Use of standard basis
calculations with two successive basis sets, provided that cc-sets in all-electron calculations recovers only a small, often
pVQZ or larger sets are employed, and Truhlar and co-wotkers nonsystematic fraction of the core and core-valence correlation
have shown that quite useful results are obtained with such aenergy. Because of this, all-electron calculations with standard
two point scheme based on the cc-pVDZ and cc-pVTZ sets. pasis sets can produce misleading results.

Despite the successes achieved in extrapolating calculated results |, predicting the binding energies, calculations on all but the

to the complete basis set Iimit,_none of the existing funct_ions “chemically bound molecules” use the counterpoise méthod
has proven to be clearl)_/ superior to all of the other functions ;" ract for basis set superposition error (B&REThis is
(fora (_Jllscussmn of the issues, see ref 58). critical. If this correction is not made, the “observed” basis set
In Figure 3b, we plot the percentage Blor{CCSD(T):] convergence error is actually a combination of the “true” basis
recovered by the cc-p\Z sets for each of the first-row atoms,  set convergence error and the basis set superposition error; a
B through Ne. The poor performance of the cc-pVDZ setis ngint that is illustrated in Figure 4. Once BSSE has been
obvious. Although the double-zeta set recovers over 85% of gjiminated, the remaining error is the basis set convergence
the correlation energy of the boron atom, the fraction of the 461 This is of more than conceptual importance. If BSSE is
correla.tion energy recovered drops dramatically along the row, not eliminated AD ) can be erratic and it may not be possible
becoming less than 60% for the heon atom. Thus, use of theto extrapolate the results to the CBS lifitOf course, in the
cc-pVDZ set to calculate atomic and molecular properties that limit of a complete basis set, BSSE is identically zero and, in

are sensitive to electronl corrglatlon effects is questlonable,fact’ we find that the magnitude of the counterpoise correction
especially for molecules involving atoms from the latter half decreases steadily with increasing|t is interesting to note

of the row. This behavior also compromises trends that involve that van Mourik et af? found that use of the counterpoise

changes in the number of electrons predicted using the cc-pVDZ . ~
. N ; : ; correction often led to a smoother dependencBodn n even
basis set. Thus, despite its popularity, calculations with the
for strongly bound molecules.

double-zeta set must be viewed with caution. i ? ; o )
The fraction of the correlation energy recovered with the cc- Itis quite possmle, and even p_robable, that binding energies
PVTZ set is not only much higher than that for the cc-pVDZ computed without the counterpoise correction are closer to the
complete basis set limit than the uncorrected values. This

set, but its variation along the row from boron to neon is . o . ey
dramatically less-from 96% (B) to 86% (Ne). Thus, one would frustrating (or lucky) situation (depending on your proclivities)

expect the triple-zeta set to provide a far more consistent 'S dué to the fact that BSSE corrections and basis set
description of the electronic structure of molecules and this is CONVergence errors are often of opposite sign.

observed to be the case. In fact, the cc-pVTZ set should be 5.1. Chemically bound Moleculesin Table 1, we list the
considered the “minimal basis set” to be used in correlated experimental bond energfésand the intrinsic errors for the
calculations. Further expanding the basis set, one finds that theperturbation theory and coupled cluster methods for a prototypi-
cc-pV5Z set nearly quantitatively recovers the valence correla- cal set of first-row, diatomic moleculé852 The set includes
tion energy of the first row atoms, yielding 99% of the estimated CH, a covalent, singly bonded molecule; HF, a very ionic, singly
CBS limit for boron to 96% of the limit for neon. bonded molecule; N a covalent, triply bonded, diatomic
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Figure 4. Comparison of basis set superposition error and basis set larger than those for the singly bonded molecules (as are the

convergence error in the calculation of binding energies. Note the . T
improvement in the convergence behavior of the binding energies after P0Nd_energies). The fact that the intrinsic errors for the

correction for BSSE. CCSD(T) method are larger for the multiply bonded species is
partially due to the fact that the CCSD(T) method is based on
TABLE 1: Intrinsic Errors in D for a Prototypical Set of a Hartree-Fock wave function and Hartred=ock wave func-
First-row, Diatomic Molecules: AD, (kcal/mol)® tions do not provide a good zero-order descriptionrdfonds.
ADCH] ~ ADJHF]  AD¢{N;]  AD{CO] Inclusion of core-valence correlation effedtseduces the
De(expt’l)® 83.9 141.6 228.4 250.3 intrinsic errors inD[CCSD(T)] to just a few tenths of a kcal/
A(cv) -0.2 -0.2 -0.8 -0.9 mol for all species considered.
CCSD -10 —22 —10.7 —84 Omission of the perturbative triples correction in the
CCSD(T) -0.2 -0.1 -1.1 -0.8 e .
CCSDT —02 17 12 CCSD(T) method substantially increases the error in the coupled
MP2 -29 4.2 11.6 12.7 cluster method: from-0.2 to—1.0 kcal/mol for CH, from—-0.1
MP3 —-1.4 -3.1 —12.6 —8.8 to —2.2 kcal/mol for HF, from—1.1 to—10.7 kcal/mol for N,
MP4 —0.6 11 34 5.0 and from—0.8 to—8.4 kcal/mol for CO. Thus;onnectedriple
MPS —1.0 excitations (§) are critical for accurate predictions of bond

2 A(cv) refers to the core-valence correction to the experimental energies with the coupled cluster method. As expected, the
values given in the first row of the table. There is perfect agreement triples correction is far more important for multiply bonded

between the measured and calculated values when the intrinsic error i glecules than for the singly bonded molecules (compare CH

the same as the core-valence correctidfor comparison to the current :

nonrelativistic calculations, the experimental dissociation energies haveand HF to N and CO) as well as for molecules with more
electrons (compare CH to HF).

been corrected for atomic spirbit effects.c See ref 87.

The MP2 method is clearly of limited use in computing the
molecule; and CO, an ionic, multiply bonded, diatomic mol- bond energies of chemically bound molecules. The errors in
ecule. Although a more extensive set of molecules could be the calculated. can exceed 10 kcal/mol and vary dramatically
considered, the current set illustrates the main points to be madgrom molecule to molecule, underestimatiDg(expt'l) by 2.9
here. kcal/mol for CH and overestimatinBe(expt’l) by 4.2, 11.6,

From the intrinsic errors for the bond energies listed in Table and 12.7 kcal/mol for HF, Nand CO, a range of more than 15
1, we see that the (valence electron) CCSD(T) method predictskcal/mol. In fact, the behavior observed in Table 1, the
the bond energies to an accuracy of better than 1 kcal/mol, savesystematic over-prediction of the bond energies of many, but
for N, where the error is-1.1 kcal/mol (this still corresponds  not all, molecules, has been a major source of confusion in the
to 99.6% of the experimental Nbond energy). Note that the use of perturbation theory to compute the bond energies of
intrinsic errors are all negative, i.e., the calculated values molecules. To illustrate this point, in Figure 5, we plot the bond
underestimate the experimental values. This is as it should be:energy of N as a function of basis set for the MP2
the correlation energy should increase with decrea§iras methods®® As can be seen, as the basis set increases in size
should the error. For the singly bonded species, including the (and completeness), the calculated bond energies also increase.
very ionic HF molecule, the errors are just a few tenths of a In fact, the curves obg(n) for both the MP2 and MP4 methods
kcal/mol. The errors for the multiply bonded molecules are much pass through the experimental value of the bond energy on their
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way to intrinsic errors oft-11.6 kcal/mol (MP2) and-3.4 kcal/ TABLE 2: Intrinsic Errors in  De for the Hydrogen Fluoride
mol (MP4). Atn ~ 3, D(MP2;n) crosses the experimental value Dimer: AD. (kcal/mol).

and the calculational error is essentially zero. Unless one was ADJ(HF)J]
aware of the dependence@§(MP2) onn, it would be tempting De(exptl) 456+ 0.05
to conclude that the MP2 method with the cc-pVTZ set gives CCSD ~0.16

a very accurate description of the wave function ¢f Tis is CCSD(T) —-0.02
clearly an incorrect conclusion: the intrinsic errorDg(MP2) MP2 —0.09

is nearly 12 kcal/mol. Similar behavior is observed for the MP4 MP3 —0.03

method where use of a cc-pVQZ basis set results in near

cancellation of the basis set convergence error and the electronic * Reference 65f.

structure method error and, thus, a false sense of confidence in

the calculation. This is not an uncommon occurrence in methods, the errors in the calculated binding energies fory(HF)

perturbation theory calculatioR$?2:64 fall within the stated error bounds;0.05 kcal/mol. The CCSD-
The intrinsic errors for the MP4 method are substantially (T), MP4, and MP3 binding energies are just 06-G203 kcal/

smaller than those for the MP2 method. However, even the MP4 Mol smaller than the experimental value. For the CCSD and

method does not approach chemical accuracy, i.e., errors of les§P2 methods, the intrinsic errors are).15 and—0.09 kcal/

than 1 kcal/mol. In addition, the relative errors vary frerd.6 mol, respectively. So, even the CCSD and MP2 methods predict
kcal/mol for CH to+5.0 kcal/mol for CO. Thus, with the MP4 ~ more than 96% of the (HE)inding energy.
method, it is not even possible to reliably predict teétive All-electron calculations have not yet been reported for ¢HF)

bond energies among a heterogeneous set of molecules such agowever, Schtz et al’®> and Klopper and Lutti#° have carried
those listed in Table 1. Similar arguments hold for the MP3 out all-electron and valence-electron MP2 calculations on the

method. water dimer and reported a core-valence correction of 0.04 kcal/
MP5 calculations have been reported on#4Fhe magnitude ~ Mol. The core-valence correction for (HF} expected to be
of the error inDg(MP5) is nearly identical to that iDe(MP4), somewhat smaller than this value (because of the larger atomic

although of opposite sign. This is an example of the convergencecharge of fluorine). Addition of the core-valence correction to
problem in perturbation expansions noted earlier. The resultsthe CCSD(T), MP4 and MP3 values fDg[(HF)] should bring
on HF combined with many other resi#fg! caution against  these results into almost perfect agreement with the experimen-
the use of perturbation theory in molecular calculations. tally derived value.
Although one might argue that the MP2 method appears to In summary, the CCSD(T) method provides unparalleled
improve upon the Hartreg~ock method, one must keep in mind  accuracy for the hydrogen-bond energy of (HM) contrast to
that the MP2 method is the first term in a slowly or noncon- chemically bound molecules, third-order and fourth-order
verging series and, therefore, its use should also be viewed withperturbation theory also provide accurate predictiorBoand
caution. the intrinsic error for the MP2 method is less that 0.1 kcal/mol.
5.2. Hydrogen-Bonded MoleculesThe hydrogen bond is ~ The available evidence suggests that these conclusions also hold
the most important of the weak molecular interactions. The for the water dimeP®"3 Indeed, these conclusions may be
concept of the hydrogen bond was introduced into chemistry generally valid if the two molecules involved in the hydrogen
by Pauling in the 1939 edition of his bodKature of the bond are well described by a HartreBock wave function. It
Chemical Bong although others were also involved in unravel- may not hold if the wave function for one or more of the
ing the anomalous physical and thermodynamic properties of molecules (or in the case of intramolecular hydrogen bonding,
matter resulting from the presence of hydrogen bonds. It is now molecule) have substantial multireference character. In this case,
widely recognized that hydrogen bonds play a critical role in the coupled cluster methods are expected to be more reliable.
many chemical processes, especially biochemical processes. 5.3. Weakly Bound Molecules.Weakly bound molecular
Hydrogen bond strengths range from less than 4 kcal/mol to complexes, in which the binding is derived mainly from the
over 40 kcal/mol, depending on the nature of the molecular electrostatic interactions between molecules, have always posed
species involved, although most fall within the range ofl0 a serious challenge for the computational quantum chemist. For
kcal/mol. Unfortunately, few hydrogen-bonded species have these species, the binding energies fall in the range of a few
been characterized to the extent that they can serve as reliableenths of a kcal/mol to a few kcal/mol. In fact, it is common to
benchmarks for theoretical calculations. quote the binding energies for weakly bound molecules in
The HF dimer has been the subject of a number of detailed wavenumbers, where 1 kcal/msl 349.76 cm?, and that will
studies. Of particular interest are the modeling and experimentalbe done here. In the past, the binding energies for these species
studies of Quack, Suhm, and co-work& and the experi- were usually underestimated, often by substantial amounts. Good
mental studies of Miller et af’ Nesbitt and co-worker®, and agreement was sometimes obtained when the BSSE nearly
Klemperer and co-workef8. This combination of studies has canceled the basis set convergence error, but these instances
allowed a reliable value oD, to be extracted from the  are clearly fortuitous.
measurements ddo. Klopper, Quack, and SuHiti report that Within the past decade, substantial experimental and modeling
De[(HF)2] = 4.56+ 0.05 kcal/mol. Unfortunately, comparable efforts have focused on three weakly bound molecules= N
data does not exist for the prototype hydrogen-bonded molecule,HF 76 Ar—HF,”” and Ar—HCI.78 As for (HF),, this combination
(H20). The estimate of the equilibrium binding energy of the has led to a detailed characterization of the potential energy
water dimer from experimental studies is %4.7 kcal/mol/®"* surfaces of these species. Because of these investments, N
an unacceptably large error bound for the present purpose. HF, Ar—HF, and A—HCI provide excellent benchmarks for
The HFHF binding energy derived from the studies of assessing the accuracy of perturbation theory and coupled cluster
Klopper, Quack, and SuHiti is listed in Table 2 along with methods for describing the interactions of weakly bound
the intrinsic errors for the coupled cluster and perturbation theory molecules. The values @, derived from the experimentally
methods’?~74 With the exception of the CCSD and MP2 based modeling studies are listed in Table 3 along with
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TABLE 3: Intrinsic Errors in  De for the N,—HF, Ar —HF, and Ar—HCI Weakly Bound Molecules: AD, (cm™1)

AD, ADJN,—HF] ADJAr—HF] ADJAr —FH] ADJAr —HCI] ADJAr —CIH]
De(expt'l) 776+ 30 211+ 4 109+ 10 176+ 5 148+ 10
CCSD -52 —45 ~36

CCSD(T) 17 0 ~15 0 -1

MP2 35 -10 ~16 31 33

MP3 -36 -31 -31

MP4 38 7 -10 10 7

the intrinsic errors for the CCSD, CCSD(T), and Mpe  [ABLE 4 Infrinsic igor(iri;‘_l)?e for the Rare Gas Dimers,
methods8ch|n this table, information on both the ArHX and 2 T z °

ArXH isomers is given, although the errors in the “experimental” AD¢(He,) AD¢(Ne;) AD¢(Ar?)
De are substantially larger for the ArXH isomers than that for De(expt’l)® 7.59 29.4 99.6
the ArHX isomers (probably even larger than the uncertainties ~ A(cv) 0.05 —0.8
quoted by the authéf’d. CCSD -11 —638 —27.6
. CCSD(T) -0.2 -1.0 -2.6

From Table 3 we see that, save for the-A&H isomer, the CCSDT 0.0
intrinsic errors for the CCSD(T) method fall well within the MP2 -27 ~105 13.4
stated error bounds for the experimentally derived binding  MP3 -1.1 -7.1 -17.6
energies. The intrinsic error D, [CCSD(T)] is essentially zero MP4 —05 —-19 0.4

for Ar—HF, Ar—HCI, and Ar~CIH. It is 17 cnTtin Ny—HF MPS —0.2

and—15 cnt!in Ar—FH, while the estimated error bounds in 2 A(cv) refers to the core-valence correction to the experimental
these two cases are30 and+10 cnTl, respectively (as noted  values given in the first row of the table. There is perfect agreement
above, the latter uncertainty may be too small). Omission of between the measured and calculated values when the intrinsic error is
the triples correction in the CCSD(T) method substantially the same as the core-valence correctfof(cv) Refers to the core

. Lo valence correction to the experimental values given in the first row of
increases the intrinsic errors De. The CCSD method under- the table. There is perfect agreement between the measured and

estimates the binding energy obNHF by 52 cnt?, Ar—HF calculated values when the intrinsic error is the same as the-core
by 45 cntl, and Ar-FH by 36 cntl. valence correction.

Given its simplicity, the MP2 method does a surprisingly good
job of predicting the properties of weakly bound molecules (as  Van Mourik, Wilson, and Dunniri§ have reported core-
it did for hydrogen-bonded molecules). The intrinsic errors for valence calculations on Nand Ar (the K-shell electrons were
De range from+35 cnt! in N,—HF to —16 cnt! in Ar—FH, not included in the Ar calculations). They found the core-
although the percentage error in ArFH (14.7%), ArHCI (17.6%), valence correction to be very small in N@.05 cnt?). Oddly
and ArCIH (22.2%) can hardly be considered exceptionally enough, the correction was positive, i.e., the core-valence
good. In ArFH, the error for the MP2 method is comparable to contribution to the correlation energy is larger for two separate
that for the CCSD(T) method. The MP2 method is nearly as neon atoms than for NeFor Ar,, the core-valence correction
accurate as the MP4 method. Only for-AdCl and Ar—CIH at the CBS limit was predicted to be0.8 cnt. Thus, the core-
are significant improvements realized by using the MP4 method. valence correction accounts for approximately one-third of the
The errors for the MP3 method tend to be larger than the errorserror in DJ(CCSD(T)].
in either the MP2 or MP4 methods, although smaller than for  Full inclusion of connected triple excitations in the CCSDT
the CCSD method. method essentially eliminates the error in the,Heénding
5.4. Very Weakly Bound Molecules.There is no more energy. Van Mourik and Dunnidghave shown that the intrinsic
demanding problem than the calculation of the binding energies error in D(CCSDT) is nearly zero: connected quadruple
of molecules whose binding arises only from dispersion excitations contribute only 0.640.015 cn1?! to the binding
interactions. Dispersion interactions are very weak, depending energy of this dimer; see also Burda efaBurda et al. also
on /s (or higher powers ot/;). These forces have no classical reported CCSDT calculations on Neéout only with the aug-
counterpart, being due to the internal, quantum mechanical cc-pVTZ basis set. These calculations predict that inclusion of
structure of the two (or more) systems involved in the complex. full triple excitations will increase the Nébinding energy by
Binding energies arising from dispersion forces range from a 0.25 cnt?, or 25% of the remaining error iDJCCSD(T)].
few hundredths to a few tenths of a kcal/mol (a few wavenum- However, this is a small basis set and, until calculations with
bers to a few hundred wavenumbers). larger basis sets are reported, we will not be able to definitively
The rare gas dimers have been well characterized by aestablish the intrinsic error in the all-electron CCSDT method
combination of experimental and modeling studies and provide for Ney.
accurate benchmarks for the electronic structure methods As expected, neither the MP2 or MP3 methods provide
discussed here. The experimentally derived binding energies foraccurate descriptions of the binding in the rare gas dimers. These
He;, Ne, and Ap are listed in Table # along with the methods do not include triple excitations, and it is known that
corresponding intrinsic errors for both coupled cluster and triple excitations are important for describing dispersion interac-
perturbation theory methods3238The CCSD method predicts  tions8 The MP4 method, which does include triple excitations,
85% of the binding energy in He77% of the binding energy  predicts 93% oD¢(He;) andDe(Ney), and 100.5% oDg(Ary).
in Ney, and 72% of the binding energy in ArThe decreased  The accuracy oDe(Ar,) is somewhat surprising. However, given
percentage for Neand A, reflects the increased importance the other terms in the perturbation expansion, this result may
of connected triple excitations in these latter two species. be fortuitous. For Hg MP5 calculations have also been carried
Including the triples correction, CCSD(T), reduces the error in out. The intrinsic error for the MP5 method 0.2 cnt?, or
De to just 3% for all three dimers. Thus, the CCSD(T) method 40% of that for the MP4 method. In fact, the erroba(MP5)
provides an accurate, consistent description of the electronicis the same as that iDJCCSD(T)]. Thus, the perturbation
structure of the rare gas dimers. theory series for Heis converging very slowly. This is
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Figure 6. Basis set convergence errors for CCSD(T) or RCCSD(T) calculatiolk &@r (a) CH and HF, and (b) Nand CO with the standard
(vnz) and augmented (az) correlation-consistent basis sets.

unfortunate since the cost of MP5 calculations is comparable (CH) to 10.7 kcal/mol (&), or from 2.8% (CO) to 4.7% (N.

to that of CCSDT calculations, both scaleNfs (although the Even for the cc-pV5Z set, the variation in the convergence error

CCSDT equations must be solved iteratively), and the intrinsic is 1.7 kcal/mol. Thus, very large basis sets will be required to

error in the CCSDT method is nearly zero forHe calculate either the absolute bond energies or the relative bond
energies of this diverse set of molecules to chemical accuracy,
i.e., with an error of less than 1 kcal/mol.

The above clearly illustrates the difficulties caused by the

Having established the electronic structure method errors for varying rates of convergence for single, double and triple bonds,
perturbation theory and coupled cluster methods, we may now and ionic and covalent molecules. For a given bond type, on
turn our attention to the basis set convergence error in thethe other hand, the situation is not so grim. Peterson and
calculation of molecular binding energied\De"{M;n) = Dunning® have shown that the rates of convergence of the
De(M;n) — Deg(M;). We will again examine the basis set CH bond energies in the GHand GH(m = 1—4) series are
convergence errors separately for the various types of interac-very similar. With the cc-pVDZ set the spread in the conver-
tions considered here: chemically bound molecules, hydrogen-gence errors is just 4.5 kcal/mol (vs 18.4 kcal/mol above), with
bonded molecules, weakly bound molecules, and very weakly the cc-pVTZ set it is just 1.4 kcal/mol (vs 8.4 kcal/mol above),
bound molecules. For these studies, we will use the CCSD(T) and with the cc-pVQZ set the spread drops to just 0.5 kcal/mol
method because, as shown in the last section, the CCSD(T)(vs 3.4 kcal/mol above). Because of this consistency, if one
method provides an accurate description of the binding energiescorrects theDs(CH) obtained with the cc-pVTZ set by adding
for all of the molecules considered here. However, the conver- approximately 2 kcal/mol to the calculated values, the resulting
gence behavior of perturbation theory and CCSD methods arebond energies agree with the experimental values to witeiry
similar to that of the CCSD(T) method, a fact used to advantage kcal/mol.
by Dunning and Peterson to approximate CCSD(T) calculations gyt even for similar bonds one must be careADLn) for
with very large basis se. the CH bond formed by addition of a hydrogen atom to

6.1. Chemically Bound Molecules.The basis set conver-  acetylene is far different than those of the other bonds in the
gence errors for calculation of the bond energies of the series’® The H-C;H, bond is formed by breaking one of the
chemically bound molecules (CH, HFpNand CO) are plotted  acetylener-bonds as the Chy-bond is formed. Calculations
in Figure 6. Consider first the results of calculations with the show that there is little dependence of the energy of this process
cc-pVnZ basis sets. With the cc-pVDZ basis d8t(CH) is 8.3 on basis set. In fact, the convergence error is positive for this
kcal/mol from the complete basis set (CBS) limit, and the bond bond, i.e., the CBS limit is approached from above, not from
energies of HF, B and CO are 15.1, 26.7, and 17.5 kcal/mol, below as is the case for the other CH bonds. The other CH
respectively, from the limit. In percentages, these correspond bonds are formed by simply pairing a radical orbital on the
to 10%, 11%, 12%, and 7% @, for CH, HF, N, and CO. CHm-1 or C;Hny—1 fragment with the 1s hydrogen orbital. This
For the cc-pVTZ set, the convergence errors range from 2.3 has the “standard” type of dependence on basis set illustrated

6. Basis Set Convergence Errors
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Figure 7. Basis set convergence errors for CCSD(T) calculatiori3.dbr the water and hydrogen fluoride dimers with the correlation-consistent
basis sets. (a) Calculations on,(®), with the standard and augmented basis sets. (b) Comparison of the convergence erraf)fcar(th (HF)
with the augmented basis sets.

in Figure 6 for CH. Thus, the simple correction given above mol upon augmentation of the cc-pVDZ set. Even for the cc-
cannot be applied to the -HC;H, bond. pVTZ and cc-pVQZ sets, augmentation reduces the error by
Cancellation of basis set convergence errors is also respon-2.4 and 1.0 kcal/mol, respectively. This is characteristic of highly
sible for the success of the isodesmic reaction schtasa ionic molecules such as HF. Because of the anion character in
means of computing molecular bond energies. In an isodesmicthe wave function, such molecules are much better described
reaction by the augmented sets. Note that with the augmented sets, the
convergence behavior @, is essentially the same for HF as
A+B—C+D (13) for CH. Use of the augmented sets tends to reduce the

the numbers of chemical bonds of each type (e.g., singlelC  differences in the basis set convergence behavior for ionic and
bonds, double €0 bonds, etc.) are the same on each side of covalent molecules and, thus, can be considered more “univer-
the reaction. To the extent that the convergence rates of thesal” sets. This concept will be further extended in the following
C—H, C=0, etc. bonds on the left and right sides of eq 13 are two sections.

similar, the calculatedEx, will be only weakly dependent on 6.2. Hydrogen-Bonded MoleculesThe basis set conver-
the basis set. This fact can be used to compute the bindinggence errors for the water dimer, 4B)),, with the standard and
energy of one of the molecules involved in eq 13 if accurate augmented sets are plotted in Figure*®arhe importance of
values of the remaining three binding energies are known (eitherthe extra diffuse functions in the augmented sets, a fact first
from calculation or experiment). For example, to compute the noted by FelleP¢ is clear. The convergence errors for the aug-
energy of the €&Cl bond in GHsCl, one could use the reaction  cc-pvnZ sets are essentially identical to those for the
cc-pV(n+1)Z sets. Since an aug-cc-p¥ set for oxygen is

CeHsCl + CH, = CaHg 1 CHLCl (14a) smaller than a cc-p\WW+1)Z set by (2+3) functions, it is
and computationally more efficient to use the augmented sets rather
than the standard sets of equivalent accuracy. Use of the doubly
Do(CgHs—Cl) = D(CHs—H) + augmented sets, on the other hand, offers only minor improve-

(14b) ments over the singly augmented sets and need not be considered
further. This conclusion applies to all hydrogen-bonded systems

Using eq 14b, a rather accurate value of the@bond energy ~ Investigated to daté:

can be computed without ever performing calculations on benzyl ~ For (HO), calculations with the aug-cc-piZ sets yield 86%,

chloride with a large basis set. 94%, and 98% oDJCCSD(T)] for n = 2—4. The absolute
Comparing theD¢'s calculated with the aug-cc-pM sets errors are 0.69, 0.28, and 0.10 kcal/mol. Thus, the aug-cc-pvVQZ

with those calculated with the cc-piZ sets, we see a marked basis set yields a hydrogen bond energy fos@} within 0.1

difference in convergence behavior only for HF. For HF the kcal/mol of the complete basis set limit. The basis set

basis set convergence error is reduced from 15.1 to 7.0 kcal/convergence errors for ga), and (HF)»*% calculated with the

D(CH,—Cl) — D(CH,—H) — AE,,,
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Figure 8. Basis set convergence errors for CCSD(T) calculationd.dbr the two isomers of ArHF with the augmented correlation-consistent
basis sets. (a) ArHF isomer. (b) ArFH isomer.

augmented sets are compared in Figure 7b. As can be seengonvergence errors are more comparable for the two isomers
ADH(n) for (H,0), and (HF) are very similar. This means when the aug-cc-phZ sets are used. As we shall see in the
that it would be possible to us&D¢Sn) for (HF), to correct next subsection, d-aug-cc-p¥ sets must be used to obtain an

for the basis set convergence error ino@b. It would be adequate description of dispersion interactions. Thus, the

interesting to know how universal this finding is. behavior of ADPYn) for the ArFH isomer suggests that
6.3. Weakly Bound MoleculesThe dependence @DS(n) dispersion interactions are more important for the more weakly

of the two isomers of ArHF (ArHF and ArFH) on basis set,  bound ArFH isomer than for the ArHF isomer.

for both the aug-cc-pkZ and d-aug-cc-piZ sets, is plotted 6.4. Very Weakly Bound Molecules The basis set conver-

in Figure 8. Both classical electrostatic (e.g., dipeiteduced  gence errors fobe(Ney) are plotted in Figure 9a. The binding

dipole) and dispersion interactions contributeDg for Ar— in Ne is due entirely to dispersion forces, which have long

HF, although the former interactions are dominant. As was the been known to place heavy demands on the basis set. These
case for the hydrogen-bonded molecules; @i and (HF),  gemands are evident in the figure. In contrast to the description
augmented sets are required to properly describe the binding inq¢ weakly bound molecules, we now find that two sets of diffuse
the Ar—HF complex (which may also be considered ahydrogen_— functions, i.e., the d-aug-cc-piZ basis sets, are required to

bonded molecule, althougbh avery Wgakly bound one). There is adequately describe the wave function obN&though the aug-
a strong dependence AD¢’{(n) on basis set. The aug-cc-pVDZ cc-pV(n+1) sets yield convergence errors that are not too much

basis set yields just 61% dD<(ArHF). The fraction ofDe larger than those of the d-aug-ccq/sets, the d-aug-cc-pZ
. 0 o ,
e o A U CCVTZ S 310 1 5ot have 2023) feer basis funclons han th aug-cc-pV-
H.0)% wh h VDZ elds 869DACBS) and (n+1)Z sets and thus are recommended for calculations on very
shé a)jg\;/\-/cc?-rp?\;T;?n%i?&S-cc-p?/%%ietz yieﬁjmé( 1% zzn?nln%% weakly bound molecules. Use of the triply augmented sets, on
. ' the other hand, leads to only a minor improvement in the
respectively. ThusDe for weakly bound molecules converges calculatedAD4(n) and need not be considered further.

more slowly thanDe for hydrogen-bonded molecules; a clear .
indication of the increased difficulty in describing weakly bound ~ 1he d-aug-cc-pVDZ set recovers 62%[§(«). Use of the
d-aug-cc-pVTZ set increases this fraction to 87%, while use of

complexes.

Aspnoted in section 5, the binding energy of the ArFH isomer the d-aug-cc-pVQZ set recovers 96% (). Interestingly
is only about one-half that of the ArHF isomer (109 ¢in As enough, these numbers are ess_entlally identical to those from
can be seen in Figure 8b, use of the doubly augmented setdhe calculations on ArHF, but with the aug-cc-p¥/ sets.
significantly improves the convergence behavioA@fg(ArFH). In Figure 8(b)ADS(n) for Ne, is plotted along witfADLSn)
In fact, the improvement is of sufficient magnitude to argue for Ar,, wheref = 0.225 [a scaling factor that minimizes the
for use of a d-aug-cc-pMZ set rather than an aug-cc-p¥ set difference between the Neand Ar convergence errors]. As

for calculations on ArFH. This means that doubly augmented can be seen, thADS(n) curve for Ne is very similar to the
sets could be needed if the entire-AdF potential energy “reduced” ADg(n) curve for Ar. This similarity is not totally
surface is of interest. However, it should also be noted that the surprising given the fact that the binding of both of these species
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Figure 9. Basis set convergence errors for CCSD(T) calculationddbr Ne, with the augmented correlation-consistent basis sets. (a)(be
Comparison of the errors for Nand Ar; the Ar, points have been scaled by= 0.225.

are determined by long-range dispersion forces, which arethe CCSDT method. For a range of molecules, these authors
largely determined by the polarizability of the Ne and Ar atoms. found that the differences were usually small, from 0.1 to 0.7
kcal/mol, with D(CCSDT) being smaller thabJCCSD(T)],
7. Path Forward see Table 1. The two exceptions to this trend wag,) and
Dg(CN). For G, Dg(CCSDT) was 2.1 kcal/mol less than
D[CCSD(T)]; for CN,D(CCSDT) is 0.8 kcal/mol greater than
DJCCSD(T)]. In general, a complete treatment of triple
excitations did not improve agreement with experiment. Thus,
a cancellation of errors is at least partially responsible for the
good performance of the CCSD(T) method. No CCSDTQ
calculations with a basis set large enough to be meaningful
(cc-pVTZ or beyond) have yet been reported. So, further work

CCSD(T) method is an illusion, prohibitively expensive for will be required to understand the convergence of the coupled

molecules of any real interest to practicing chemists? Finally, cluster expansion. .
the accuracy of the CCSD(T) method is dependent on extrapola- Both the G and CN molecules are poorly described by the
tion of the calculated binding energies to the complete basis HF wave function. If these errors are due to the inadequacy of
set limit. What can be done about the slow convergence of the HF zero-order wave function, the obvious solution to the
binding energies with basis set? In this section we will briefly Problem is to use a multlconﬂguranon wave funct|o_n fHﬁ;
touch on each of these issues. Unfortunately, the use of multireference wave functions in eq
7.1. More Accurate Coupled Cluster Calculations on 8 leads to mathematical difficulties in the solution of the
Molecules. There are two sources of error in the CCSD(T) resulting coupled cluster equations. Several approaches have
method. The first is due to truncation of the coupled cluster P€en developed to address such problems, including the state-
expansion; the second is due to the use of the HF wave functionuniversal multireference coupled cluster method of Kucharski
as the zero-order wave function. The equations for the CCSDT @nd Bartle® (based on an ansatz originally proposed by Jeriorski
and CCSDTQ methods have been derived by Bartlett and co-and Monkhors¥) and the state-specific multireference coupled
workers® However, use of these methods poses significant cluster method of Li and Paldd$Both of these methods have

computational problems as CCSDT calculations scalél&as ~ Met with some success. However, neither have been bench-
while CCSDTQ calculations scale &0 Nevertheless, the ~ Marked as described herein. Additional mathematical and/or
CCSDT method has been implemented in the ACES Il proram Computational work remains to be done to establish an efficient,
and has been used by Felféeller and Sord8® and Bak et theoretically sound multireference coupled cluster method.
al.8 to systematically investigate the differences between the 7.2. CCSD(T) Calculations on Large MoleculesSince
perturbative treatment of connected triple excitations in the CCSD(T) calculations scale as’, doubling the size of a
CCSD(T) method and the full inclusion of these excitations in molecule increases the computing requirements by over a factor

From the above it is clear that a major breakthrough in the
calculation of molecular binding energies was achieved in the
1990s. The level of accuracy that is now obtainable was all but
unimaginable at the beginning of that decade. But, what if
the desired accuracy is higher than that achievable by the
CCSD(T) method? What about the next step in refining the
calculated binding energies? Also, as noted in section 3.2,
CCSD(T) calculations scale d¢’. Does this mean that the
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of 100. Given the cost of CCSD(T) calculations on triatomic and co-worker§? has recently been applied to coupled cluster
and tetratomic molecules, this steep dependence on the numbemethods by Werner, and co-workéfsTheir algorithm uses a
of basis functions would seem to rule out calculations on large set of orbitals obtained by combining localized HF MOs with
molecules. However, advances in both computing technology AOs projected onto the HF orbitals. Because of the localized
and algorithms for coupled cluster calculations are pushing this nature of the MOs, correlation between electrons in orbitals that
approach to larger and larger molecules. Using massive paral-are widely separated can be neglected. This method has been
lelism, computers capable of 1 trillion arithmetic operations per shown to lead to much improved scaling with molecular size.
second (TFLOPS) are already in place, e.g., at the San DiegoHowever, it involves additional approximations relative to the
Supercomputer Center, and computers capable of 100 TFLOPSalgorithm put forward by Scuseria and Ay&fa.
are expected to become available within the next four years. Save for the HF and density functional methods, the impact
Although few computational chemistry codes can exploit this of reduced scaling algorithms has yet to be felt in chemistry.
level of parallelism, the high-performance computational chem- As the above discussion shows, reduced scaling algorithms for
istry group at the Pacific Northwest National Laboratory, correlated molecular calculations are imminent. When these
working with a worldwide group of collaborators, has recently algorithmic advances are combined with the advances in
released a new code, NWChé&myhich is capable of perform- ~ computing technology wrought by massive parallelism, the
ing coupled cluster calculations on terascale computers. With impact will be truly revolutionary. Problems that currently seem
NWChem, it should be possible to routinely carry out intractable will not only become doable, they will become
CCSD(T) calculations on molecules containing 20 or more routine.
atoms with a cc-pVQZ basis set on th&/3TFLOPS computer 7.3. Slow Convergence of Basis Set Expansiorige slow
to be installed at DOE’s National Energy Research Scientific convergence of molecular binding energies with basis set is a
Computing Center (Lawrence Berkeley National Laboratory) result of the fundamental inability of basis set expansions to
later this year. represent the wave function as the interelectronic distange (

The scaling laws given above assume that the calculations@PProaches zero. For a two-electron system, it can be shown
are carried out in terms of the canonical, delocalized Hartree that (un-normalizedy
Fock orbitals. Although aiN® step is required to transform the

. . . . : _ 1

two-electron integrals over atomic orbitals (AOs) to integrals Lim, o W(rp) =1+ 755, (15)
over molecular orbitals (MOs), this approach has a number of
advantages. For example, in terms of the canonical HF orbitals, This is a result of the singularity in the electreelectron
the number of double excitation amplitudes that must be interaction (1f;) whenri, — 0 and is analogous to the
calculated in the CCSD equations'is(nonv(non,+1)), where  electron-nuclear cusp condition. Expansions in a basis set of
No is the number of occupied orbitals angis the number of  one-electron functions cannot reproduce this behavior. Although
virtual orbitals N = n, + ny). If the equations were instead it is beyond the scope of the present paper to discuss many-
written in terms of the AOs, there would Bé(N?(N*+1)) electron approaches to the calculation of molecular binding
amplitudes. If we assume thaj > n,, there will be (/no)? energies (see the review by KlopPRr it is worthwhile to note
more amplitudes in the AO case than in the MO case. For the that Kutzelnigg, Klopper, and co-worké?8have developed an
aug-cc-pVTZ setn, ~ 10n,, so there will be 100 times more  efficient scheme to include terms linear g, in the wave
AO than MO amplitudes. This argument, however, neglects the function expansion. Inclusion of lineai, terms ensures that
efficiencies that could be realized by screening. Screening haseq 15 is satisfied and substantially improves the rate of
long been used in HF calculations and has been found to reduceconvergence of the calculations. Closure relations are used to
the formalN* scaling toN? — N? (with a few more tricks, linear  eliminate the many-electron integrals that arise jrdependent
scaling is even possible for sufficiently large moleéfleJust wave functions.
as in the HF case, screening the contributions to the correlation The coupled cluster equations in the linegs formalism,
energy can reduce the formal scaling of correlated calculations CC—R12, have been derived by Noga and Kutzel#§gnd
to far less than those predicted by the scaling laws. implemented in DIRCCR12 by Noga and Klopféisee also

To take maximum advantage of screening, the equations forref 100k]. These authors have shown that CCSD(T)-R12
the coupled cluster methods must be rewritten in terms of AOs calculations can provide essentially converged redfits?
rather than MOs. It is in the localized AO basis, rather than the However, large basis sets, slightly larger than the aug-cc-pV5Z
delocalized MO basis, that the decay of the interaction integrals basis set, must be used to ensure the accuracy of the closure
with distance can be most readily exploited. This has recently approximation. Nonetheless, the CCSD(T)-R12 method is a
been done for the CCD method by Scuseria and AjaBy significant advance when high accuracy is sought. For example,
examining a number of test cases, these authors showed thatfor the four chemically bound molecules considered here, the
for sufficiently large molecules, the CCD equations could be convergence errors in calculationsi CCSD(T)] with the aug-
solved just as efficiently in the AO basis as in the MO basis. cc-pV5Z set are-0.18 (CH),—0.15 (HF),—0.70 (CO), and
Because the effectiveness of the screening procedure will —1.45 kcal/mol (N). While the errors irDe(CH) andDe(HF)
increase with molecule size, the question is not whether the may be acceptable, those IRCO) andDe(N) are not.
use of AOs is more efficient than the use of MOs, but where )
the crossover point occurs. The preliminary studies of Scuseria8- Conclusions

and Ayal& suggest that the crossover point for extended  The work presented in the previous sections clearly establishes

molecules may occur around @0 atoms (the exact crossover  that quantum chemists achieved a major advance in the ab initio

point depends on a number of factors, including the basis set,calculation of molecular binding energieBd in the 1990s. It

the shape of the molecule, etc.). is now possible to calculate accurate binding energies for a broad
Itis also possible to base correlated calculations on localized range of molecules, from those bound by very weak dispersion

molecular orbitals instead of the delocalized, canonical HF interactions to those bound by the strongest chemical interac-

orbitals. This approach, which was first put forward by Pulay tions. This advance is a result of the development of new
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electronic structure methods (the coupled cluster methods) andPerturbation theory methods appear to be useful for describing
basis sets (the correlation consistent basis sets) for solving thehydrogen-bonded molecules and may be useful for treating some
Schralinger equation as well as a detailed understanding of the weakly bound molecules (electrostatic interactions); even the
errors that arise in the calculation of binding energies. In this MP2 method performs satisfactorily in these cases. Perturbation
article we discussed the sources of the errors and thentheory methods are marginally useful for describing the binding
systematically analyzed the errors in the calculation of molecular in very weakly bound molecules. The series converges very
binding energies for chemical interactions (“chemically bound slowly, e.qg., for Hethe MP5 method, aN® method, is no more
molecules™), hydrogen-bonded interactions (“hydrogen-bonded accurate that the CCSD(T) method, ldhmethod.

molecules”), electrostatic interactions (‘weakly bound mol-  Thebasis set corergence erroiis the error in the molecular
ecules”), and dispersion interactions (“very weakly bound property calculated with a given basis set relative to that obtained
molecules”). The binding energies associated with these interac-with a complete basis set. The functional form of the error
tions range from hundreds of kcal/mol to a few hundredths of depends on the correlation method used. From the work
a kcal/mot-a variation of 4 orders of magnitude! This analysis presented here and elsewh&e8 4 we can draw the following
leads to clear guidelines for the choice of electronic structure conclusions.

method and basis set to use in the calculation of molecular  cqrrejation Consistent Basis SetsCorrelation consistent

binding energies. Let us recap our findings. basis sets, cc-p\Z, provide a hierarchy of basis sets with
Theelectronic structure method erran the binding energy  accuracy (i.e., completeness) systematically increasingmwith

is the error inherent in a given electronic structure method, i.e., Binding energies computed with the sets appear to converge

it is the difference between the value of the binding energy smoothly to the complete basis set limit and can be extrapolated

computed with a complete basis set and the experimental bindingto that limit with reasonable error bounds.

energy. This error is also referred to as the intrinsic error for  The pasis set convergence error for the bond energies of

the method. In the current s_tudy we limited our considerations jitferent types of chemical bonds (covalent, ionic, single, double,
to valence-electron calculations; such calculations are generallyyipie ) differ significantly. Thus, for a general set of

capable of predicting molecular binding energies to an accuracy molecules, large basis sets will be required to achieve either
of 1/2 to 1%. The results from all-electron calculations were high absolute or high relative accuracy. The convergence
noted whenever they were available to quantify the magnitude pepayior of similar bonds in different molecules differ far less,
of the core-valence correction. From the work presented here ang more computationally tractable basis sets can provide high
and elsewhef&** we can draw the following conclusions. relative accuracy for these bonds. The isodesmic reaction scheme
Coupled Cluster Methods.The CCSD(T) method provides  can also be used to decrease the dependence on basis set.
an accurate description of the electronic structure of all of the  pifferent families of correlation consistent basis sets are
molecular systems considered. The calculated binding energiesequired to describe different types of molecular interactions.
are in excellent agreement with the experimental values as 3y standard sets provide an excellent description of covalent
follows. (a) For chemically bound molecules, hydrogen-bonded mgjecules. (b) Augmented sets are required to efficiently
molecules, and weakly bound molecules, the intrinsic errors in gescribe highly ionic molecules, hydrogen-bonded molecules,
binding energies e) computed with the valence-electron 54 weakly bound molecules (i.e., those bound by electrostatic
CCSD(T) method are less than 1% (and often less than 0.5%).interactions). (c) Doubly augmented sets are required to describe

For chemically bound molecules, this is usually close to yery weakly bound molecules where the binding is mainly due
chemical accuracy, i.e£1 kcal/mol. (b) For very weakly bound {5 gispersion interactions.

molecules the error is somewhat larger; it is approximately 3%
for the rare gas dimers. (c) Inclusion of core-valence and
relativistic effects in calculations on strongly bound molecules
reduces the intrinsic error in the CCSD(T) method to well under -\ - 1as” with the aug-cc-pVTZ set yielding 984% of

8,46,103-105
one kca!/ moF _ o ~ D¢(). For weakly bound molecules an aug-cc-pVTZ set yields
InCIUS|On Of fu" trlple EXCItatlonS, the CCSDT method, n Just 85_87% Of De(oo), Wh||e a d_aug_cc-pVTz set |s required

calculations oDe for strongly bound molecules leads to slightly o achieve 85-87% of De(e0) for very weakly bound molecules.
larger errors than does the CCSD(T) metR6d? Thus, the

excellent agreement achieved for the CCSD(T) method is partly c
a result of compensating of errors. However, the observed
differences are usually just a few tenths of a kcal/mol, although

Convergence to the complete basis set limit is fastest for
strongly bound molecules with the aug-cc-pVTZ set yielding
96—98% of De(0), and slightly slower for hydrogen-bonded

A major source of confusion in assessing the accuracy of
alculations was identifie#f® The calculational error, which
is the error for a given electronic structure method and basis
. set, is the sum of the electronic structure method error and the
they can be Iarger_for molecules that are poorly described by basis set convergence error. If the latter two quantities are of
the HF wave function. different sign, the errors may nearly cancel for some choice of
For weakly bound molecules, specifically 5i¢he intrinsic basis set if). This is often the case for MP2 and MP4
error in the CCSDT method is only on the order of 0.1%®ef perturbation theory calculations. These methods overestimate
Omission of the perturbative triples correction in the CCSD D, for many strongly bound molecules (three of the four
method substantially increases the error relative to that for the considered here), and the resulting cancellation of the conver-
CCSD(T) method. The CCSD method does not provide accurategence error and the method error could lead the unsuspecting
predictions of molecular binding energies, although it clearly researcher to erroneously conclude that a given calculation is
provides semiquantitative trends. very accurate.

Perturbation Theory Methods. Perturbation theory methods The approach outlined here for analyzing the requirements
are unsatisfactory for describing strongly bound molecules as for the calculation of molecular binding energies can be readily
the perturbation series converges slowly or even diverges andextended to other molecular properties. In addition, it can be
does not yield chemical accuracy (intrinsic errors of less than readily extended to electronic structure methods not considered
1 kcal/mol) even at fourth (or fifth) order perturbation theory. here. For an excellent example of the application of these
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concepts to the calculation of atomization energies and reactionChemistry Package 2000.200Q For further information, see: http://
enthalpies, the reader is referred to a recent article by Bak etWWw-tc.bham.ac.uk/molpro/.

al.106
With the advent of parallel supercomputers capable of trillions

of arithmetic operations per second and the implementation of

new algorithms that take advantage of “reduced scaling’
techniques, it will be possible to extend coupled cluster
calculations to a broad range of molecules important in
combustion chemistry, environmental chemistry, chemical vapor
deposition, and industrial processing. This will extend the
revolution begun in the 1990s to the real world of chemistry.
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