Luminescent Heterometallic Europium(III)-Lutetium(III) Metal-Organic Frameworks

A.S. Mereshchenko*, V.G. Nosov, A.A. Vidyakina

Saint-Petersburg State University, Saint-Petersburg, RUSSIA

*a.mereshchenko@spbu.ru

Conclusions

- 1. At Eu^{3+} concentration 1-20 at. %, heterometallic europium(III)-lutetium(III) terephthalates are formed as a mixture of $(Eu_xLu_{1-x})_2bdc_3 \cdot 4H_2O$ crystalline phases. At higher Eu concentrations, a single crystalline phase is formed, $(Eu_xLu_{1-x})_2bdc_3 \cdot 4H_2O$.
- 2. All the synthesized samples containing Eu³⁺ demonstrate bright red emission corresponding to ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0-4) transitions of Eu³⁺ ion ($\lambda_{ex.}$ =280 nm).
- 3. Eu^{3+} ion unevenly distributed between Ln_2bdc_3 and $Ln_2bdc_3 \cdot 4H_2O$ phases: $Ln_2bdc_3 \cdot 4H_2O$ crystalline phase is enriched by Eu^{3+} ions.
- 4. In Eu₂bdc₃·4H₂O, the local symmetry of Eu³⁺ ion is pseudo-C₄. In (Eu_xLu_{1-x})₂bdc₃·4H₂O, the increase of Lu³⁺ ions ratio leads to the Eu³⁺ local symmetry distortion to C₂ or lower point group (symmetry). The local symmetry of Eu³⁺ is proposed to be C₁ in anhydrous (Eu_xLu_{1-x})₂bdc₃.
- 5. ${}^{5}D_{0}$ excited state lifetimes are 4 4.8 times larger for Eu³⁺ in Ln₂bdc₃ crystalline phase than in Ln₂bdc₃·4H₂O due to the absence of luminescence quenching of Eu³⁺ by coordinated water molecules.
- 6. The luminescence quantum yields of terephthalate ions decrease with the increase of europium concentration from 2 to 100 at. % Eu³⁺ upon excitation into S₁ ($^{1}\pi\pi^{*}$) singlet electronic excited state.